

L'arte del silenzio

The art of silence

Technical catalogue

The solutions to your questions

Design for living - the perfect instrument for you as Designer, Architect, Engineer or Acoustical Consultant.

This is the new technical catalogue from Isolgomma, a manual wich is easy

to use and offers solutions for thermal and sound insulation in buildings.

Our aim: to provide the best solutions for comfortable living.

Our skilled Technical Department is at your complete disposal for any further specific request **tecservice@isolgomma.com**

Visit our web site: www.isolgomma.com

Application guideline

The solutions shown in this manuals are proposed with the scope to solve acoustic need first; nevertheless the given solution are suitable for other purpose as summarized here following:

Impact noise insulation

Walls airborne sound insulation

Ceilings airborne sound insulation

Thermal insulation

Fire protection

Ecological product

Recycled product

Isolgomma Company...

Research & Development: we invest in innovation

4

Company History:

- 1972 Establishment of Isolgomma in Vicenza.
- 1985 The "Roll" mat line for impact sound insulation for floor is patented.
- 1993 The new "Mustwall" panels line for acoustic wall insulation is patented.
- 1999 A new factory in Albettone is built.
- 2001 Isolgomma obtains ISO 9001 quality system certification.
- 2002 The research center in Pozzuoli (NA) is inaugurated.
- 2005 The new "Grei" line for flooring insulation is patented.
- 2008 New Isolgomma Acoustics Lab is built according to ISO140 standard.
- 2012 Opening of San Paolo (Brasile) Sale Office.

Technical support

Isolgomma's Technical Support is capable to offer:

Before sale:

solutions for the acoustic and thermal insulation of floors and walls are studied and developed calculating optimum performance and presenting a professional Acoustic Technical Report.

After sale:

the client is supported at the construction site in the application phase. In-Site Acoustic Tests can be conducted according to ISO 140 and ISO 717, by the Isolgomma engineers.

A commitment to well being and quality of living: Quality of life evolves from silence.

Environmental sustainability

Construction materials need to be more and more Eco-Friendly to ensure the lowest environmental impact. Isolgomma has always used recycled raw materials, highly selected, to preserve the environment and quality of life.

Isolgomma now operates in full compliance with EN ISO 14001 and OHSAS 18001:2007 standards.

Isolgomma is member of GBC Italia organization and with its products which contain a minimum of 92% recycled materials, contributes to achieve the LEED[®] credits rate system.

Acoustic insulation

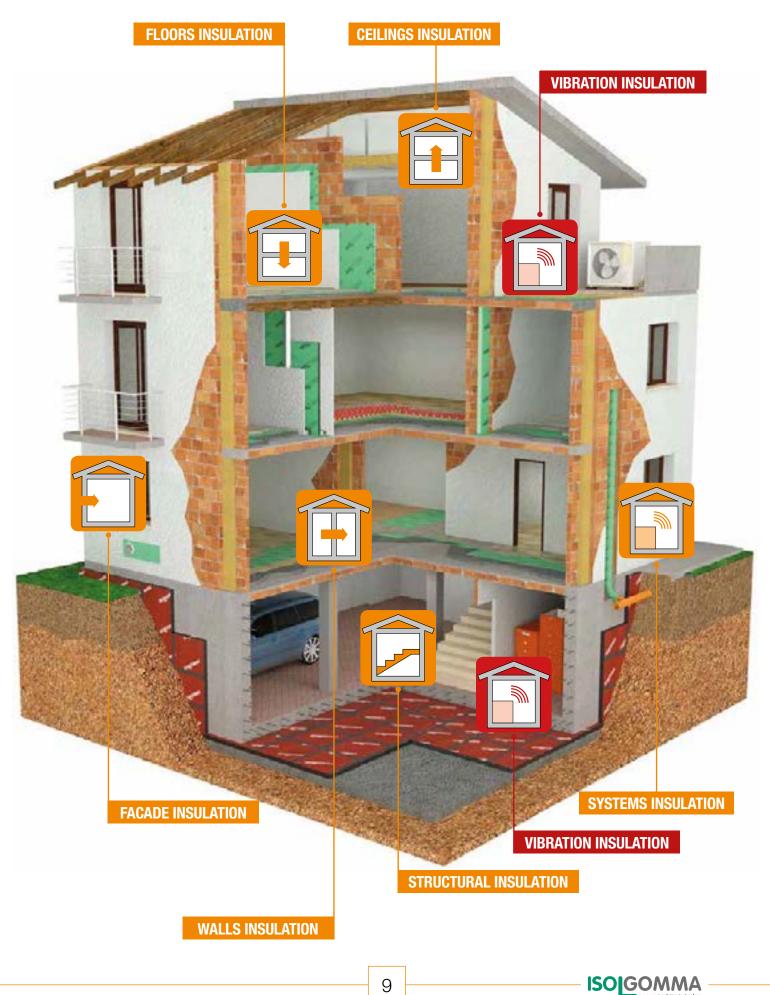
Isolgomma has been a leading company in the supply of sound insulations for new housing and commercial building markets for many years.

In fact, due to an extremely wide and varied product range, which guarantee excellent performance, the company is able to offer multiple solutions for floor and wall sound insulation.

Thermal insulation

Isolgomma has developed product lines that combine thermal and acoustic insulation for partitions and light walls.

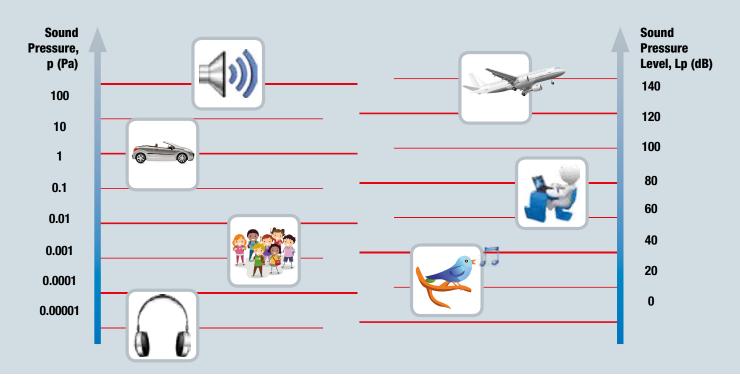
Using innovative recycled rubber technology, the company provides solutions with optimal thermal insulation, excellent humidity resistance and ease of installation.



building **Index**

OUSTIC BASICS				1	
ANDARDS				1	
OLGOMMA LABO				1	
	APPLICATION	APPLICATION DETAIL	PRODUCTS		
		FLOATING SCREED	Syl, Roll, Grei, Upgrei	1	
	_	UNDERFLOOR HEATING	Syl, Roll, Grei, Upgrei	2	
	FLOORS	WOODEN SLAB STRUCTURE	Syl, Roll, Grei, Upgrei	2	
	INSULATION		Syl, Roll, Grei, Upgrei	3	
		UNDER CERAMIC FLOOR	Sylcer	3	
		UNDER WOODEN FLOOR	Sylwood	3	
	CEILINGS	COATED	Mustwall B, Mineral B, Rewall, Natur B	4	
	INSULATION	SUSPENDED	Trywall, Fybro, Natur, Mineral	4	
	WALLE	DOUBLE WALL	Mustwall, Fybro, Biwall, Natur, Mineral	5	
	WALLS INSULATION	COATED WALL	Trywall, Natur, Mineral	5	
		PLASTERBOARD WALL	Mustwall B, Rewall B, Natur B, Mineral B	5	
	FACADES INSULATION	VENTILATION HOLE	Sylencer	6	
	STRUCTURAL	STAIRS	Stabe		
	INSULATION	UNDERWALL	Stywall		
	SYSTEMS INSULATION	PIPES	Stywall S3 A	7	
	VIBRATION	FOUNDATION	Megamat	7	
	INSULATION	VIBRATING MACHINES	Megamat	ε	
		ACOUS	TIC CALCULATIONS	8	
		TECHN	ICAL DATA SHEETS	1	
		INSTALL	ATION INSTRUCTIONS	1	
				18	
	LAB	LABORATORY TESTS			
			SITE TESTS	19	
		EXAMPLES OF ACC	USTIC BUILDING CALCULATION	2	

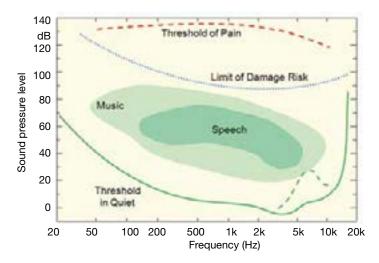
Application Guide building



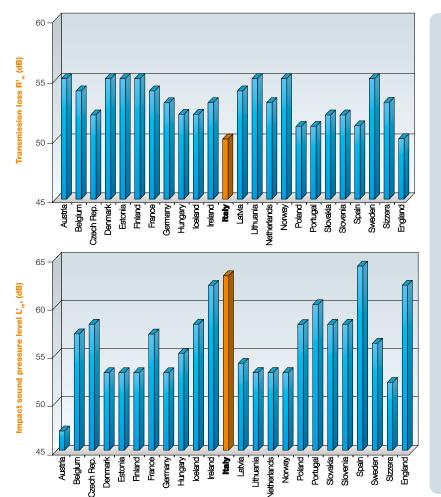
building **Acoustic basics**

Sound is a molecular wave, produced by a **sound source** which is propagated in an elastic means with an oscillator mechanism to produce a pressure variation and a particle movement around an equilibrium point.

The sound is **propagated through the air** (or other physical element) as a longitudinal wave. The sound velocity is a function of the air property and not from the frequency or sound wave shape.


Sound from a pressure unit point of view involves 8 units of magnitude, from **0.00001 Pa up to 100 Pa**. This wide range is not practical for acoustical analysis, evaluation and measurement and does not reflect the behaviour and sensibility of the human hearing system.

The **sound pressure scale "Lp"**, compresses all the various pressure levels into a very narrow range of values. This scale allows us to handle values with a maximum of three digits and no decimals. In the above scale, a small variation in "dB" value corresponds to a large variation of the pressure level "Pa".


The human hearing system experiences sounds from **16 Hz** to **20.000 Hz**. In the construction industry or under laboratory and/or site tests, the reference **range** of frequency is between **100 Hz** to **3150 Hz**.

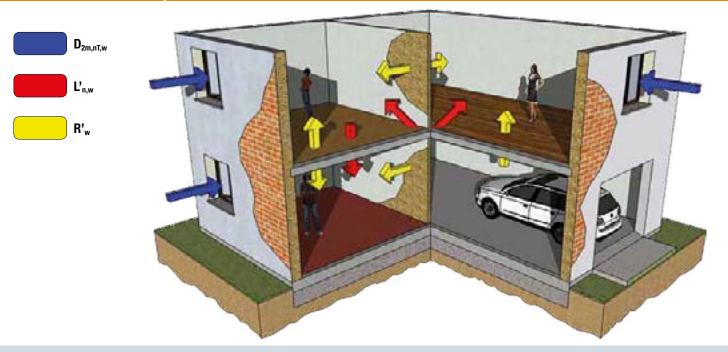
The graphic on the right illustrates the range of frequencies that the average person is exposed to.

EUROPEAN LAWS AND STANDARDS

From a Technical point of view certain groups of ISO and EN standards govern the various calculation, measurements and testing situations (e.g. ISO 140, ISO 717, EN 12354); while the performance indexes of the various building regulations are still governed by the national laws of each individual country. The following graphs shows the indexes as per the national laws of acoustic insulation levels for walls and floors for each country.

From these we can see the variations in **European insulation** levels from country to country.

Moreover in at least 9 European countries a **"Classification System"** is implemented, which prescribes higher acoustic insulation levels for higher classified building ratings.


This allows the grading of each building from a comfort point of view.

The bottom table shows the insulation indexes by country as well as the **national building classification** (if any) and the standard reference code.

Country	Airborne Insulation	Impact Sound	Insulation Index	Insulation Class National Standard
Denmark	55-58 (R' _w + Ctr 50-3150)	53 (L' _{n,w})	A/B/C/D	DS 490
Finland	55 (R' _w)	53 (L' _{n,w})	A/B/C/D	SFS 5907
Iceland	53 (n.d.)	58 (n.d.)	A/B/C/D	IST 45
Norway	55 (R' _w)	53 (L' _{n,w})	A/B/C/D	NS 8175
Sweden	53 (R' _w + Ctr 50-3150)	56 (L' _{n,w})	A/B/C/D	SS 25267
Lithuania	55 (n.d.)	53 (n.d.)	A/B/C/D/E	STR 2.01.07
Germany	53-56 (R' _w + Ctr 50-5000)	53 (L' _{n,w})	₩/₩/1	VDI 4100
Netherlands	52-57 (D _{nT,w} + C)	53 (L' _{nT,w} +Ci)	1/2/3/4/5	NEN 1070
France	53-55 (D _{nT,A})	55 (L' _{nT,w})	QLAC / QL	Qualitel
Belgium	54-58 (D _{nT,w} + C)	58 (L' _{nT,w})	-	-
Austria	55-58 (D _{nT,w})	48 (L' _{nT,w})	-	-
Switzerland	49 (D _{nT,w} + C)	55 (L _{nT,w} +C _i)	-	-
Great Britain	45 (D _{nT,w} + Ctr)	62 (L' _{nT,w})	-	-
Spain	45 (D _{nT.w})	68 (L' _{nT.w})	-	-
Portugal	50 (D _{nT,w})	60 (L' _{nT,w})	-	-
Italy	50 (R' _w)	63 (L' _{n,w})	-	D.P.C.M. 05/12/1997
Estonia	52 (R' _w)	60 (L' _{n,w})	-	-

building **Standard**

70

65 60

55

50

45

40

35 30

35 30

DETERMINATION OF R_w INDEX FOR AIRBORNE SOUND INSULATION

R_w and R'_w according to ISO 717-1

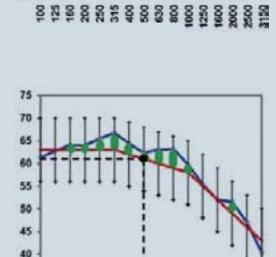
The transmission loss index R_w, is the value in dB at 500Hz of the ISO curve 717-1 (red curve) after the due translation. In fact the reference curve ISO 717 (red) must be moved up or down so that the yellow area have to be ≤ 32 dB of the recorded curve.

- + positive variation
- negative variation

DETERMINATION OF Lnw INDEX FOR IMPACT SOUND LEVEL

L_{n,w} and L'_{n,w} according to ISO 717-2

The impact sound insulation index L_w, is the value in dB at 500Hz of the ISO curve 717-2 (red curve) after the due translation.


As said above the reference curve ISO 717 (red) must be moved up or down in order to get the function \leq 32 dB satisfied.

+ positive variation

- negative variation

Reference curve (717-1) **Reference curve translate**

For **thermal insulation** means all systems and operations making up the efforts to reduce the heat flow of heat exchanged between the two environments at temperatures different. The thermal insulation in building construction is aimed, primarily, in order to contain the heat inside buildings.

The interventions of thermal insulation in buildings are regulated by the provisions of the European Community, to which designers and applicators should refer. It is therefore appropriate to inquire in great detail about the requirements of the law and even more about the actual technical capabilities of the applicators which are given appropriate training and to equip itself with adequate certification.

The thermal insulation of a material is measured by its thermal conductivity. If we consider a constructive element in the whole talk about the total heat transfer coefficient U.

Index	Unit	Definition
λ	(W/m K)	thermal conductivity
R	(m²K/W)	thermal resistance
R _{si}	(m²K/W)	internal thermal convection resistance
R _{se}	(m²K/W)	external thermal convection resistance
U	(W/m²K)	thermal trasmittance

 λ : derives from laboratory tests or references; it depends on the product.

R_{si}-R_{se}: derives from standards; conventional values of internal and external surfaces of the building.

$R = s1/\lambda 1 + s2/\lambda 2 + s3/\lambda 3 +$	Thermal resistance of a multi-layer system
R _T = R + Rsi + Rse	Thermal resistance of a building element
$U = 1/R_{T}$	Thermal trasmittance of the building element

Duilding element	Intermal thermal convection resistance			
Building element	Rsi	Rse		
Internal wall (between two dwellings)	0.13	0.13		
External wall	0.13	0.04		
Internal floor (between two dwellings or towards a cold car box / cellar)	0.17	0.17		
Floor towards outside	0.17	0.04		

building **Isolgomma Laboratory**

Since June 2008 **Isolgomma S.r.I.** is equipped with an Acoustic Laboratory made according to ISO 10140 standards and suitable to conduct acoustic test for floor and walls.

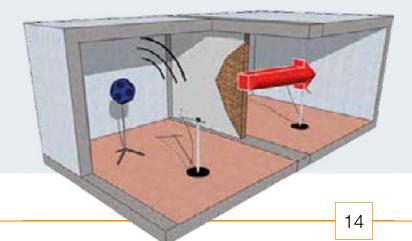
It had been designed and built in cooperation with **Padua University** following the latest rules of acoustics and building standards.

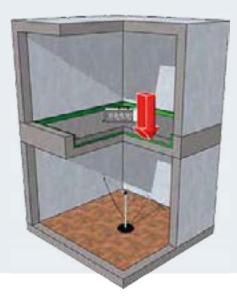
Thanks to this news advance Laboratory the R&D lsolgomma department is able to perform the following tests:

- Airborne sound insulation index for partition walls, floors and roofs.
- Impact sound insulation index for standardized floor on reinforced concrete slab of 14 cm thickness.
- Impact sound insulation index for beam & hollow blocks floor of 20+5 cm thickness.
- Vibration Test on building environment.

Isolgomma Laboratory

Pictures from real laboratory tests


DESCRIPTION

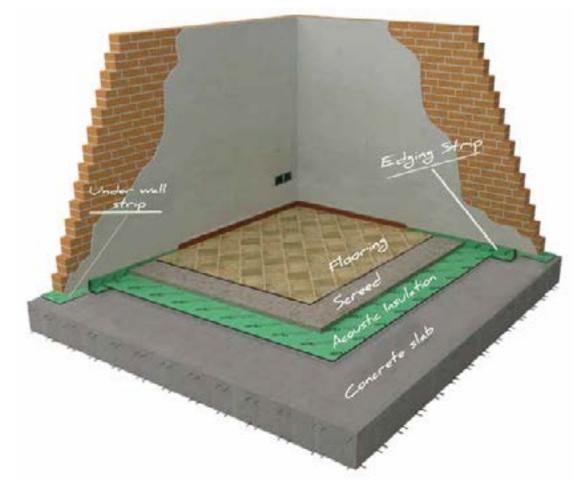

In the bottom Laboratory rooms we have an opening frame of 12m² size of 60 cm thickness on which the partition walls are built to conduct the Airborne noise insulation test .

At the upper floor we have two rooms equipped with one 140 mm reinforced concrete slab floor and one with beam & Hallow blocks floor of 25 cm thickness in accordance with Italian market.

- The rooms are physically disconnected both vertically and horizontally thanks to elastomeric joints.
- As prescribed from the ISO 10140 Standard the floor and wall dimension are bigger than 10 m².
- The rooms volumes are bigger than 50 m³.
- The upper rooms for impact sound insulation are closed to avoid any airborne interference.

The maximum Airborne sound insulation value testable is 65 dB.

FLOORS INSULATION



Floating screed

A floating screed is the ideal solution for the impact sound insulation of any type of floor. This floor system is designed in order to obtain "mass" over the resilient layer which is acting as a "spring" to produce that mitigation effect.

This floor system very efficiently reduces sound waves and vibration produced by walking, speaking or other sources. This is thanks to the floor system transforming all vibration and sound into micro movements of the upper floating screed.

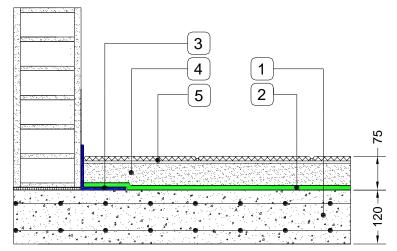
<u>Under-Wall Strip</u>: under any wall or partition a resilient strip is needed in order to prevent the transfer of structural vibration or noise to the floor and vice versa.

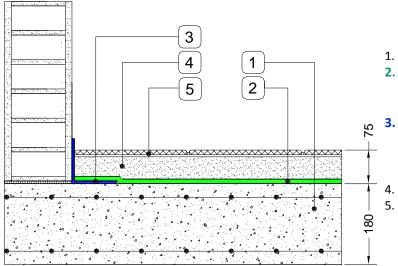
<u>Levelling Screed</u>: if there is piping located over the floor base a levelling screed is required in order to produce a homogeneous flat surface on which the resilient layer will be placed.

<u>Acoustic Insulation</u>: the acoustic insulation layer is selected to achieve the required level of impact sound improvement as specified by the relevant national building regulations.

Edging Perimeter Strip: to achieve the floating movements of the upper screed, the screed must be separated from the surrounding room walls. This separation can be obtained by placing the horizontal insulation layer onto to the vertical wall side or more simply by using the Profyle Self Adhesive Edging Strips which are placed on all the perimeter walls before laying down the horizontal insulation layer. In this manner an elastic joint between the floating screed and the wall is created granting free movement of the floor against the walls.

Floating Screed: a traditional mixture of sand and cement or a "self-levelling" proprietary screed mixture. The important point here is to achieve a uniform thickness with a minimum thickness required by the acoustical analysis in our application manual of never less than 4 cm.


<u>Floor Finish</u>: during the application of the floor finishing, it is important not to cut the edging strip along the wall, but to keep it intact for the separation of the floating screed and the walls.

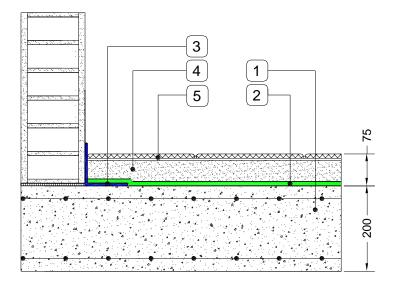

Floating screed

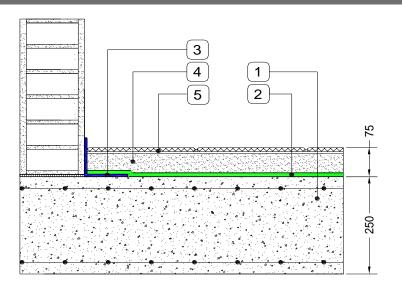
120 mm concrete slab

- 1. Concrete slab, 120 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 4. Sand and cement floating screed , 50 mm thickness
- 5. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	61	54	2.07		Page 126	Page 168		
Roll 5	58	54	2.04		Page 120	Page 168	Page 182	
Roll 7	56	54	1.96		Page 120	Page 168	Page 182	
Roll 10	54	54	1.85		Page 120	Page 168	Page 183	
Grei 5	54	54	1.94	Page 84	Page 122	Page 168	Page 183	
Grei 8	53	54	1.79		Page 122	Page 168	Page 184	
Upgrei 8	50	54	1.64		Page 124	Page 168	Page 184	

- 1. Concrete slab, 180 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
 - Sand and cement floating screed , 50 mm thickness
- 5. Ceramic tile floor finish, 15 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	57	57	2.13		Page 126	Page 168		
Roll 5	54	57	1.93		Page 120	Page 168	Page 182	
Roll 7	52	57	1.86		Page 120	Page 168	Page 182	
Roll 10	50	57	1.76		Page 120	Page 168	Page 183	
Grei 5	50	57	1.85		Page 122	Page 168	Page 183	
Grei 8	49	57	1.71	Page 84	Page 122	Page 168	Page 184	
Upgrei 8	46	57	1.57		Page 124	Page 168	Page 184	

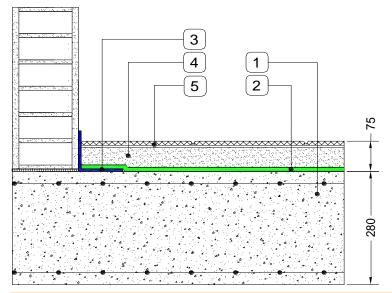


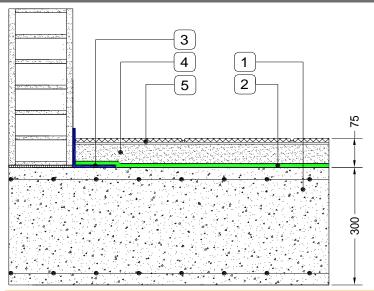
200 mm concrete slab

- 1. Concrete slab, 200 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 4. Sand and cement floating screed, 50 mm thickness
- 5. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	56	58	2.09		Page 126	Page 168		
Roll 5	53	58	1.90		Page 120	Page 168	Page 182	
Roll 7	51	58	1.83		Page 120	Page 168	Page 182	
Roll 10	49	58	1.74	Page 85	Page 120	Page 168	Page 183	
Grei 5	49	58	1.82		Page 122	Page 168	Page 183	
Grei 8	48	58	1.68		Page 122	Page 168	Page 184	
Upgrei 8	45	58	1.55		Page 124	Page 168	Page 184	

- 1. Concrete slab, 250 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 4. Sand and cement floating screed, 50 mm thickness
- 5. Ceramic tile floor finish, 15 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	53	61	1.86		Page 126	Page 168		
Roll 5	50	61	1.83		Page 120	Page 168	Page 182	
Roll 7	48	61	1.76	Page 85	Page 120	Page 168	Page 182	
Roll 10	46	61	1.67		Page 120	Page 168	Page 183	
Grei 5	46	61	1.75		Page 122	Page 168	Page 183	
Grei 8	45	61	1.62		Page 122	Page 168	Page 184	
Upgrei 8	42	61	1.50		Page 124	Page 168	Page 184	

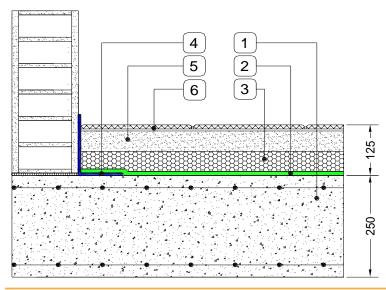

Floating screed

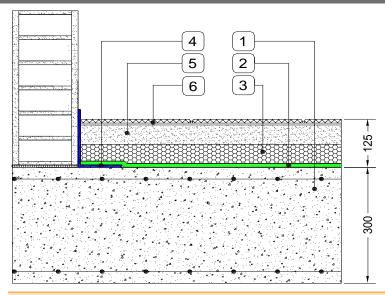
280 mm concrete slab

- 1. Concrete slab, 280 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 4. Sand and cement floating screed , 50 mm thickness
- 5. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	51	62	1.81		Page 126	Page 168		
Roll 5	48	62	1.78	Page 86	Page 120	Page 168	Page 182	
Roll 7	46	62	1.72		Page 120	Page 168	Page 182	
Roll 10	44	62	1.64		Page 120	Page 168	Page 183	
Grei 5	44	62	1.71		Page 122	Page 168	Page 183	
Grei 8	43	62	1.59		Page 122	Page 168	Page 184	Page 200
Upgrei 8	40	62	1.47		Page 124	Page 168	Page 184	

- 1. Concrete slab, 300 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 4. Sand and cement floating screed , 50 mm thickness
- 5. Ceramic tile floor finish, 15 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	50	63	1.79		Page 126	Page 168		
Roll 5	47	63	1.76		Page 120	Page 168	Page 182	
Roll 7	45	63	1.70		Page 120	Page 168	Page 182	
Roll 10	43	63	1.61		Page 120	Page 168	Page 183	
Grei 5	43	63	1.69		Page 122	Page 168	Page 183	
Grei 8	42	63	1.57		Page 122	Page 168	Page 184	
Upgrei 8	39	63	1.45	Page 86	Page 124	Page 168	Page 184	

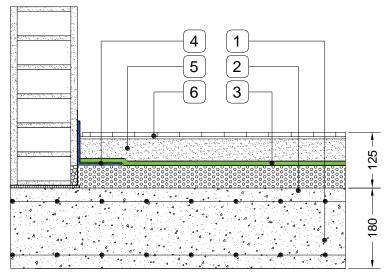

250 mm concrete slab with thermal insulation

- 1. Concrete slab, 250 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Thermal insulation, 50 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Sand and cement floating screed , 50 mm thickness
- 6. Ceramic tile floor finish, 15 mm thickness

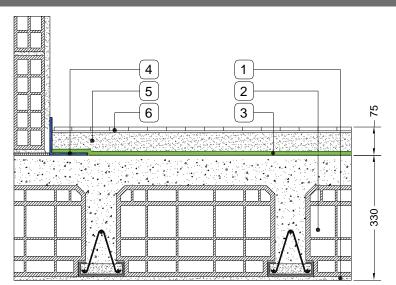
Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	53	61	0.50		Page 126	Page 168		
Roll 5	50	61	0.50		Page 120	Page 168	Page 182	
Roll 7	48	61	0.49		Page 120	Page 168	Page 182	
Roll 10	46	61	0.48		Page 120	Page 168	Page 183	
Grei 5	46	61	0.49	Page 87	Page 122	Page 168	Page 183	
Grei 8	45	61	0.48		Page 122	Page 168	Page 184	
Upgrei 8	42	61	0.47		Page 124	Page 168	Page 184	

300 mm concrete slab with thermal insulation

- 1. Concrete slab, 300 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Thermal insulation, 50 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Sand and cement floating screed , 50 mm thickness
- 6. Ceramic tile floor finish, 15 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	50	63	0.49		Page 126	Page 168		
Roll 5	47	63	0.49		Page 120	Page 168	Page 182	
Roll 7	45	63	0.49		Page 120	Page 168	Page 182	
Roll 10	43	63	0.48		Page 120	Page 168	Page 183	
Grei 5	43	63	0.49		Page 122	Page 168	Page 183	
Grei 8	42	63	0.47	Page 87	Page 122	Page 168	Page 184	Page 200
Upgrei 8	39	63	0.46		Page 124	Page 168	Page 184	

Floating screed


180 mm concrete slab with levelling screed

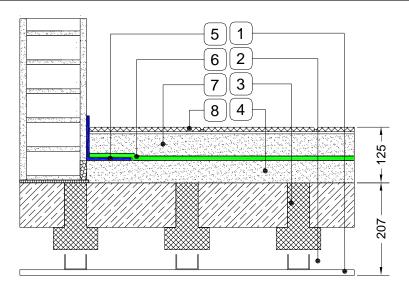
- 1. Concrete slab, 180 mm thickness
- 2. Levelling screed with eps granules and cement, 50 mm thickness
- 3. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Sand and cement floating screed, 50 mm thickness
- 6. Parquet flooring, 10 mm thickness

L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
56	58	0.94		Page 126	Page 168		
53	58	0.93		Page 120	Page 168	Page 182	
51	58	0.92		Page 120	Page 168	Page 182	
49	58	0.89		Page 120	Page 168	Page 183	
49	58	0.91		Page 122	Page 168	Page 183	
48	58	0.88	Page 88	Page 122	Page 168	Page 184	Page 203
45	58	0.84		Page 124	Page 168	Page 184	
	56 53 51 49 49 48	56 58 53 58 51 58 49 58 49 58 48 58	L _{nw} (dB) R _w (dB) (W/m²K) 56 58 0.94 53 58 0.93 51 58 0.92 49 58 0.89 49 58 0.91 48 58 0.88	L _{nw} (dB) R _w (dB) (W/m²K) Calculation 56 58 0.94 53 58 0.93 51 58 0.92 49 58 0.89 49 58 0.91 48 58 0.88 Page 88	L _{nw} (dB) R _w (dB) (W/m²K) Calculation Product data 56 58 0.94 Page 126 53 58 0.93 Page 120 51 58 0.92 Page 120 49 58 0.89 Page 120 49 58 0.91 Page 122 48 58 0.88 Page 88 Page 122	L _{nw} (dB) R _w (dB) (W/m²K) Calculation Product data Installation 56 58 0.94 Page 126 Page 168 53 58 0.93 Page 120 Page 168 51 58 0.92 Page 120 Page 168 49 58 0.89 Page 120 Page 168 49 58 0.91 Page 122 Page 168 48 58 0.88 Page 88 Page 122 Page 168	L _{nw} (dB) R _w (dB) (W/m ² K) Calculation Product data Installation Lab test 56 58 0.94 Page 126 Page 168 Page 182 53 58 0.93 Page 120 Page 168 Page 182 51 58 0.92 Page 120 Page 168 Page 182 49 58 0.89 Page 120 Page 168 Page 183 49 58 0.91 Page 88 Page 122 Page 168 Page 183 48 58 0.88 Page 88 Page 122 Page 168 Page 184

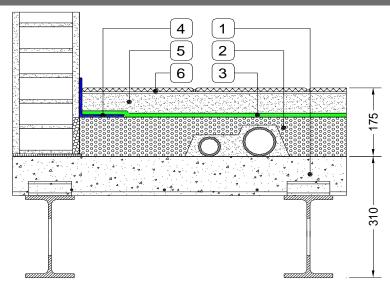
320 mm Hollow brick slab

- 1. Plaster, 10 mm thickness
- 2. Hollow brick slab, 320 mm thickness
- 3. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm

ISOGOMMA

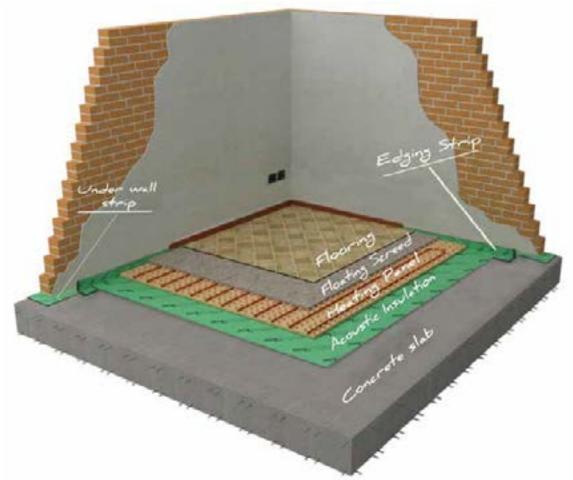

- 5. Sand and cement floating screed, 50 mm thickness
- 6. Parquet flooring, 8 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	58	57	1.17		Page 126	Page 168		
Roll 5	55	57	1.16		Page 120	Page 168	Page 182	
Roll 7	53	57	1.14		Page 120	Page 168	Page 182	
Roll 10	51	57	1.10		Page 120	Page 168	Page 183	Page 200
Grei 5	51	57	1.13		Page 122	Page 168	Page 183	
Grei 8	50	57	1.08	Page 88	Page 122	Page 168	Page 184	
Upgrei 8	47	57	1.02		Page 124	Page 168	Page 184	


Beam and block floor

- 1. Gypsum board layer, 12.5 mm thickness
- 2. Air cavity, 50 mm thickness
- 3. Beam and block floor , 150 mm thickness (150 mm beam, 100 mm block)
- 4. Sand and cement screed, 50 mm thickness
- 5. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 6. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 7. Sand and cement floating screed , 50 mm thickness
- 8. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	61	57	0.73		Page 126	Page 168		
Roll 5	58	57	0.72		Page 120	Page 168	Page 182	
Roll 7	56	57	0.71		Page 120	Page 168	Page 182	
Roll 10	54	57	0.70	Page 89	Page 120	Page 168	Page 183	
Grei 5	54	57	0.71		Page 122	Page 168	Page 183	
Grei 8	53	57	0.69		Page 122	Page 168	Page 184	Page 203
Upgrei 8	50	57	0.67		Page 124	Page 168	Page 184	


Steel beam and concrete slab

- Steel beam and concrete slab of 100 mm thickness, 310 mm total thickness
- 2. Levelling screed to cover piping system, 100 mm thickness
- 3. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Sand and cement floating screed , 50 mm thickness
- 6. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	63	55	0.63		Page 126	Page 168		
Roll 5	60	55	0.63		Page 120	Page 168	Page 182	
Roll 7	58	55	0.62		Page 120	Page 168	Page 182	
Roll 10	56	55	0.61		Page 120	Page 168	Page 183	
Grei 5	56	55	0.62		Page 122	Page 168	Page 183	
Grei 8	55	55	0.60	Page 89	Page 122	Page 168	Page 184	
Upgrei 8	52	55	0.58		Page 124	Page 168	Page 184	

Underfloor heating

Underfloor heating systems needs good impact sound insulation since the heating panels are very weak on acoustic insulation.

In this case the floating screed concept is applied to create a floating mass consisting of the screed, heating panel and floor finish; these elements are located above the resilient layer which adds an elastic spring effect to the system.

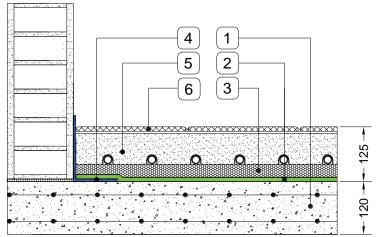
<u>Under-Wall Strip</u>: under any wall or partition a resilient strip is needed in order to prevent the transfer of structural vibration or noise to the floor and vice versa.

<u>Levelling Screed</u>: if there is piping located over the floor base, a levelling screed is required in order to produce a homogeneous flat surface on which the resilient layer will be placed.

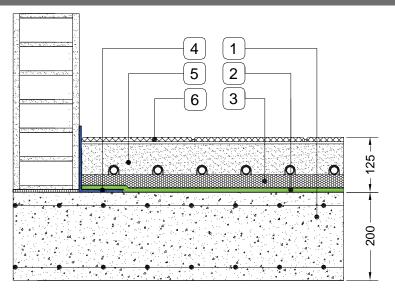
<u>Acoustic Insulation</u>: the acoustic insulation layer is selected so as to achieve the required level of impact sound improvement as specified by the relevant national building regulations.

Edging Perimeter Strip: to achieve the floating movements of the upper screed, it must be separated from the surrounding room walls. This separation can be obtained by placing the horizontal insulation layer onto to the vertical wall side or more simply by using the Profyle Self Adhesive Edging Strips which are placed on all perimeter walls before laying down the horizontal insulation layer. In this way an elastic joint between the floating screed and the wall is created, granting a free movement of the floor against the walls.

Heating Panel: the heating panel must be placed over the resilient acoustic insulation layer. The piping system is then installed over the panel.


<u>Floating Screed</u>: a traditional mixture of sand and cement or a "self-levelling" proprietary screed mixture. The important point here is to achieve a uniform thickness with a minimum thickness required by the acoustical analysis in our application manual of never less than 4 cm.

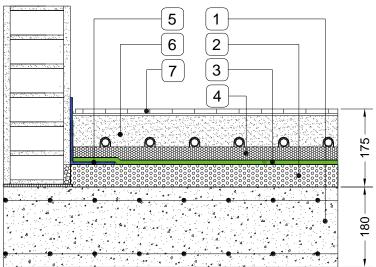
<u>Floor Finish</u>: during the application of the floor finishing, it is important not to cut the edging strip along the wall, but to keep it intact for the separation of the floating screed and the walls.



120 mm concrete slab

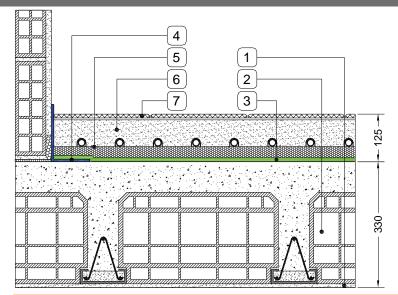
- 1. Concrete slab, 120 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. 30 mm thick heating panel and piping. 50 mm total thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Sand and cement floating screed, 50 mm thickness
- 6. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	61	54	0.73		Page 126	Page 168		
Roll 5	58	54	0.73		Page 120	Page 168	Page 182	
Roll 7	56	54	0.72		Page 120	Page 168	Page 182	
Roll 10	54	54	0.70	Page 90	Page 120	Page 168	Page 183	
Grei 5	54	54	0.72		Page 122	Page 168	Page 183	
Grei 8	53	54	0.69		Page 122	Page 168	Page 184	
Upgrei 8	50	54	0.67		Page 124	Page 168	Page 184	


- 1. Concrete slab, 200 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. 30 mm thick heating panel and piping. 50 mm total thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Sand and cement floating screed , 50 mm thickness
- 6. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	56	58	0.72		Page 126	Page 168		
Roll 5	53	58	0.71		Page 120	Page 168	Page 182	
Roll 7	51	58	0.70		Page 120	Page 168	Page 182	
Roll 10	49	58	0.69		Page 120	Page 168	Page 183	
Grei 5	49	58	0.70		Page 122	Page 168	Page 183	
Grei 8	48	58	0.68		Page 122	Page 168	Page 184	
Upgrei 8	45	58	0.66	Page 90	Page 124	Page 168	Page 184	

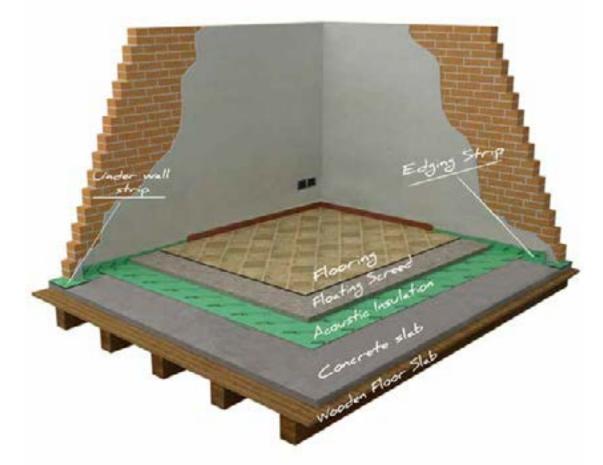
Underfloor heating


180 mm concrete slab with levelling screed

- 1. Concrete floor slab, 180 mm thickness
- 2. Levelling screed with eps granules and cement, 50 mm thickness
- 3. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 4. 30 mm thick heating panel and piping. 50 mm total thickness
- 5. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 100 mm, height 200 mm
- 6. Sand and cement floating screed , 50 mm thickness
- 7. Parquet flooring, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	56	58	0.51		Page 126	Page 168		
Roll 5	53	58	0.51		Page 120	Page 168	Page 182	
Roll 7	51	58	0.51		Page 120	Page 168	Page 182	
Roll 10	49	58	0.50		Page 120	Page 168	Page 183	
Grei 5	49	58	0.51	Page 91	Page 122	Page 168	Page 183	
Grei 8	48	58	0.49		Page 122	Page 168	Page 184	
Upgrei 8	45	58	0.48		Page 124	Page 168	Page 184	

320 mm Hollow brick slab


- 1. Plaster, 10 mm thickness
- 2. Hollow brick slab, 320 mm thickness
- 3. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 4. 30 mm thick heating panel and piping. 50 mm total thickness
- 5. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 6. Sand and cement floating screed , 50 mm thickness
- 7. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	58	57	0.58		Page 126	Page 168		
Roll 5	55	57	0.57		Page 120	Page 168	Page 182	
Roll 7	53	57	0.57		Page 120	Page 168	Page 182	
Roll 10	51	57	0.56		Page 120	Page 168	Page 183	
Grei 5	51	57	0.57		Page 122	Page 168	Page 183	
Grei 8	50	57	0.55	Page 91	Page 122	Page 168	Page 184	Page 201
Upgrei 8	47	57	0.54		Page 124	Page 168	Page 184	

Wooden slab structure

The wooden floor slab structure, has a light structural mass which requires a high grade of acoustic insulation.

A common solution is to combine the wooden structure with concrete structures.

In this case we can create a floating screed system as follows.

<u>Base Screed</u>: a steel reinforced concrete slab which has the scope to increase the static load capacity of the wooden base slab. This concrete slab improves the total floor mass, and therefore the acoustic insulation.

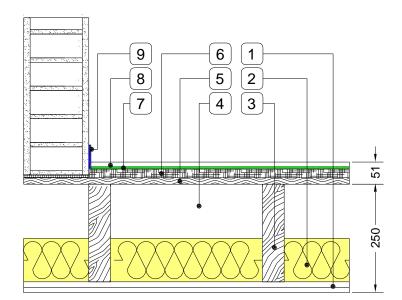
<u>Under-Wall Strip</u>: under any wall or partition a resilient strip is needed in order to prevent the transfer of structural vibration or noise to the floor and vice versa.

<u>Levelling Screed</u>: if there is piping located over the floor base, a levelling screed is required in order to produce a uniform flat surface on which the resilient layer will be placed.

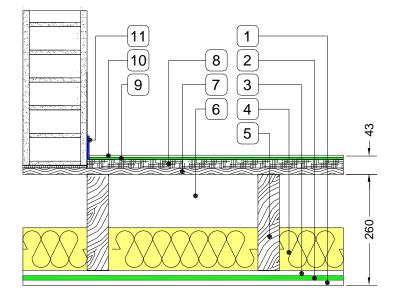
<u>Acoustic Insulation</u>: the acoustic insulation layer is selected so as to achieve the required level of impact sound improvement as specified by the relevant national building regulations.

Edging Perimeter Strip: to achieve the floating movements of the upper screed, it must be separated from the surrounding room walls. This separation can be obtained by placing the horizontal insulation layer onto the vertical wall side or more simply by using the Profyle Self Adhesive Edging Strips which are placed on all perimeter walls before laying down the horizontal insulation layer. In this way an elastic joint between the floating screed and the wall is created , granting a free movement of the floor against the walls.

Floating Screed: a traditional mixture of sand and cement or a "self-levelling" proprietary screed mixture. The important point here is to achieve a uniform thickness with a minimum thickness required by the acoustical analysis in our application manual of never less than 4 cm.


<u>Floor Finish</u>: during the application of the floor finishing, it is important not to cut the edging strip along the wall, but to keep it intact for the separation of the floating screed and the walls.

Wooden slab structure

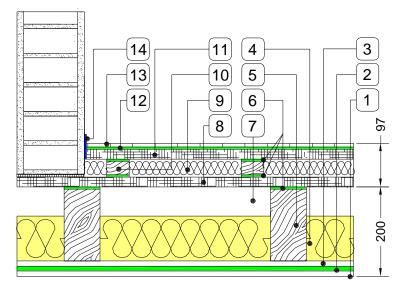

Timber framed floor with under wooden floor and ceiling

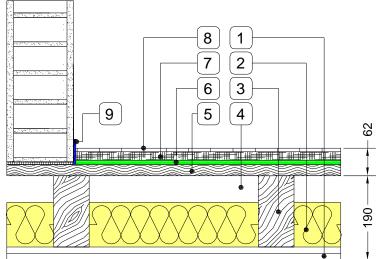
- 1. Plasterboard double layer, 2x12.5 mm thickness
- 2. Rock wool panel, 100 mm thick, 50 kg/m³ density
- 3. Wooden beam, 225 mm x 50 mm
- 4. Air cavity, 125 mm thickness
- 5. Plywood flooring, 18 mm thickness
- 6. OSB panel, 20 mm thickness
- 7. Acoustic insulation supplied in roll, 5 mm thickness
- 8. Parquet flooring, 8 mm thickness
- 9. Acoustic insulation strip

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	61	55	0.26	Page 92	Page 126	Page 168	Page 185	

Timber framed floor with under wooden floor and ceiling

- 1. Plasterboard layer, 12.5 mm thickness
- 2. Acoustic insulation panel, 5 mm thickness
- 3. Plasterboard layer, 12.5 mm thickness
- 4. Rock wool panel, 100 mm thick, 50 kg/m³ density
- 5. Wooden beam, 225 mm x 50 mm
- 6. Air cavity, 60 mm thickness
- 7. Plywood flooring, 18 mm thickness
- 8. OSB panel, 20 mm thickness
- 9. Acoustic insulation panel, 10 mm thickness
- 10. Parquet flooring, 8 mm thickness
- 11. Acoustic insulation strip


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Mustwall 10	59	62	0.26	Page 92	Page 126 - 134	Page 168	Page 185	

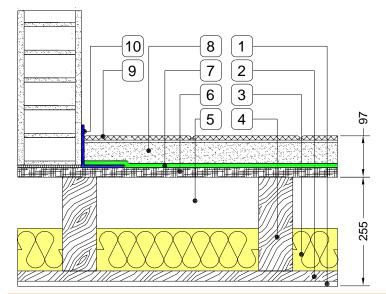

Timber framed floor with timber joinst and ceiling

- 1. Plasterboard layer, 12.5 mm thickness
- 2. Acoustic insulation panel 10 mm thickness
- 3. Plasterboard layer, 12.5 mm thickness
- 4. Rock wool panel, 100 mm thick, 50 kg/m³ density
- 5. Wooden beam, 80 mm x 160 mm
- 6. Acoustic insulation strip, 5 mm thickness
- 7. Air cavity, 65 mm thickness
- 8. Wooden board (OSB), 22 mm thickness
- 9. Rock wool panel, 30 mm thick, 70 kg/m³ density
- 10. Wooden stud, 30 mm x 50 mm
- 11. Wooden board (OSB), 22 mm thickness
- 12. Acoustic insulation supplied in roll, 5 mm thickness
- 13. Parquet flooring, 8 mm thickness
- 14. Acoustic insulation strip

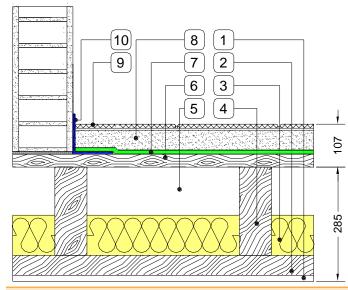
Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Mustwall 10	50	63	0.204	Page 93	Page 126-134	Page 168	Page 185	

Timber framed floor with floating plywood and ceiling

- 1. Plasterboard layer double layer, 2x15 mm thickness
- 2. Rock wool panel, 100 mm thick, 50 kg/m³ density
- 3. Wooden beam, 80 mm x 160 mm
- 4. Air cavity, 65 mm thickness
- 5. Wooden board, 25 mm thickness
- 6. Acoustic insulation supplied in roll, 5-10 mm thickness
- 7. Wooden board, 19 mm thickness
- 8. Parquet flooring, 8 mm thickness
- 9. Acoustic insulation strip


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 10	55	55	0.25	Page 93	Page 120	Page 168		
Grei 5	55	55	0.25		Page 122	Page 168		
Upgrei 8	53	55	0.25		Page 124	Page 168		

Wooden slab structure


Timber framed floor with floating screed and ceiling

- 1. Plasterboard layer, 12.5 mm thickness
- 2. Wooden beam, 24 mm x 68 mm
- 3. Rock wool panel, 100 mm thick, 50 kg/m³ density
- 4. Wooden beam, 80 mm x 220 mm
- 5. Air cavity, 120 mm thickness
- 6. Wooden board (OSB), 22 mm thickness
- 7. Acoustic insulation supplied in roll, 5-10 mm thickness
- 8. Sand and cement screed, 50 mm thickness
- 9. Ceramic tiles, 10 mm thickness
- 10. Acoustic insulation strip

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	60	55	0.26		Page 126	Page 168		
Roll 5	59	55	0.25		Page 120	Page 168	Page 182	
Roll 7	57	55	0.25		Page 120	Page 168	Page 182	
Roll 10	55	55	0.25		Page 120	Page 168	Page 183	
Grei 5	55	55	0.25	Page 94	Page 122	Page 168	Page 183	
Grei 8	54	55	0.25		Page 122	Page 168	Page 184	
Upgrei 8	52	55	0.25		Page 124	Page 168	Page 184	

Timber framed floor with floating screed and ceiling

- 1. Plaster, 15 mm thickness
- 2. Wooden plank, 50 mm thickness
- 3. Rock wool panel, 100 mm thick, 50 kg/m³ density
- 4. Wooden beam, 80 mm x 220 mm
- 5. Air cavity, 120 mm thickness
- 6. Wooden plank, 32 mm thickness
- 7. Acoustic insulation supplied in roll, 5-10 mm thickness
- 8. Sand and cement screed, 50 mm thickness
- 9. Ceramic tiles, 10 mm thickness
- 10. Acoustic insulation strip

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	59	56	0.25		Page 126	Page 168		
Roll 5	58	56	0.25		Page 120	Page 168	Page 182	
Roll 7	56	56	0.25		Page 120	Page 168	Page 182	
Roll 10	54	56	0.25		Page 120	Page 168	Page 183	
Grei 5	54	56	0.25		Page 122	Page 168	Page 183	
Grei 8	53	56	0.25		Page 122	Page 168	Page 184	
Upgrei 8	51	56	0.24	Page 94	Page 124	Page 168	Page 184	

29

Terrace

Terraces located above the housing area, or internal balconies and flat roofs, are floors that must be isolated from impact noise.

A floating screed is the ideal solution - creating a floating mass of a screed and floor finish. These elements are located above the resilient layer which adds an elastic spring effect to the whole system.

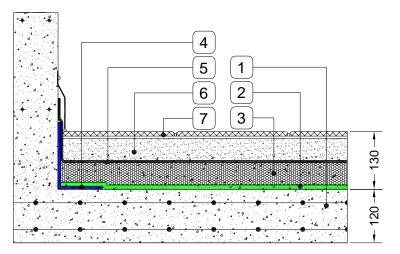
<u>Acoustic Insulation</u>: the acoustic insulation layer is selected to achieve the required level of impact sound improvement as specified by the relevant national building regulations.

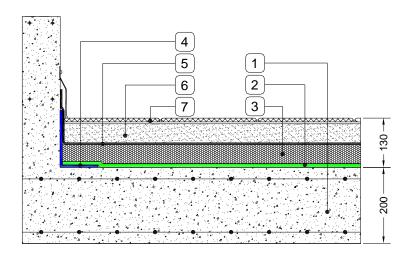
Edging Perimeter Strip: to achieve the floating movements of the upper screed, the screed must be separated from the surrounding room walls. This separation can be obtained by placing the horizontal insulation layer onto the vertical wall side or more simply by using the Profyle Self Adhesive Edging Strips which are placed on all perimeter walls before laying down the horizontal insulation layer. In this way an elastic joint between the floating screed and the wall is created granting free movement of the floor against the walls.

<u>Thermal Insulation</u>: above the acoustic insulation a layer of thermal insulation is generally provided as specified by the relevant national building regulations. Fibres or Synthetic panels can be used depending on the grade of thermal insulation to be achieved.

<u>Water Proof Membrane</u>: a Bituminous membrane or other equivalent material preventing water penetration in the inner structure.

<u>Floating Screed</u>: a traditional mixture of sand and cement or a "self-levelling" proprietary screed mixture. The important point here is to achieve a uniform thickness with a minimum thickness required by the acoustical analysis in our application manual of never less than 4 cm.

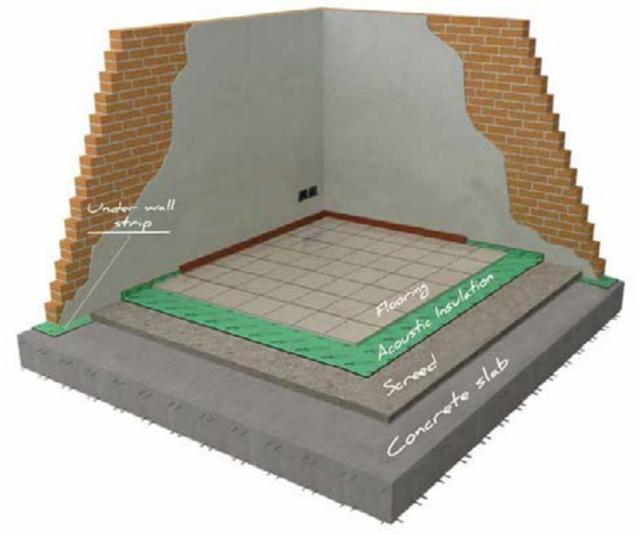

<u>Floor Finish</u>: during the application of the floor finishing, it is important not to cut the edging strip along the wall, but to keep it intact for the separation of the floating screed and the walls.


Terrace

120 mm concrete slab

- 1. Concrete slab, 120 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Thermal insulation in polystyrene, mineral wool or other similar material, 50 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 100 mm, height 200 mm
- 5. Waterproof membrane, 10 mm thickness
- 6. Sand and cement floating screed , 50 mm thickness
- 7. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	61	54	0.50		Page 126	Page 168		
Roll 5	58	54	0.50	Page 95	Page 120	Page 168	Page 182	
Roll 7	56	54	0.50		Page 120	Page 168	Page 182	
Roll 10	54	54	0.49		Page 120	Page 168	Page 183	
Grei 5	54	54	0.49		Page 122	Page 168	Page 183	
Grei 8	53	54	0.48		Page 122	Page 168	Page 184	
Upgrei 8	50	54	0.47		Page 124	Page 168	Page 184	


- 1. Concrete slab, 200 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM rubber. Thickness is between 5-10 mm
- 3. Thermal insulation in polystyrene, mineral wool or other similar material, 50 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 100 mm, height 200 mm
- 5. Waterproof membrane, 10 mm thickness
- 6. Sand and cement floating screed, 50 mm thickness
- 7. Ceramic tile floor finish, 15 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5	56	58	0.49		Page 126	Page 168		
Roll 5	53	58	0.49		Page 120	Page 168	Page 182	
Roll 7	51	58	0.49		Page 120	Page 168	Page 182	
Roll 10	49	58	0.48	Page 95	Page 120	Page 168	Page 183	
Grei 5	49	58	0.49		Page 122	Page 168	Page 183	
Grei 8	48	58	0.48		Page 122	Page 168	Page 184	
Upgrei 8	45	58	0.46		Page 124	Page 168	Page 184	

Under ceramic floor

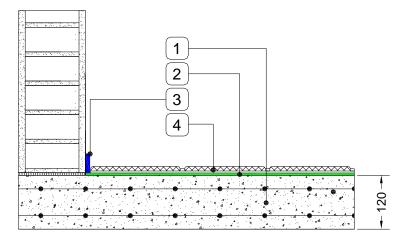
The under tiles flooring insulation is used in the case of renovation, when the demolition of the screed is not possible, or to increase the performance of floors with floating screed, having a traditional ceramic finishing. The resilient mat is glued on the screed or on the existing finishing and the final flooring is glued on it.

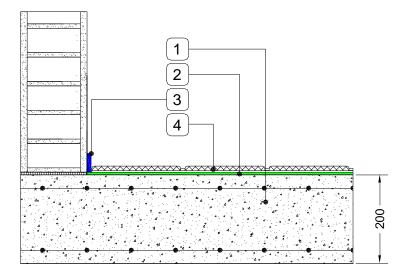
<u>Under wall strip</u>: under any wall or partition a resilient strip is needed in order to prevent the transfer of structural vibration or noise to the floor and vice versa.

Levelling screed: if there is piping located over the floor base, a levelling screed is required in order to produce a uniform flat surface on which the resilient layer will be placed.

<u>Floating Screed</u>: a traditional mixture of sand and cement or a "self-levelling" proprietary screed mixture. The important point here is to achieve a uniform thickness with a minimum thickness required by the acoustical analysis in our application manual of never less than 4 cm.

<u>Acoustic Insulation</u>: must be laid down on a clean flat concrete base. It can be glued to the base using an elastic adhesive.


<u>Flooring</u>: it is made of ceramic tiles or stone; it is glued on the resilient mat and grouted with specific products.

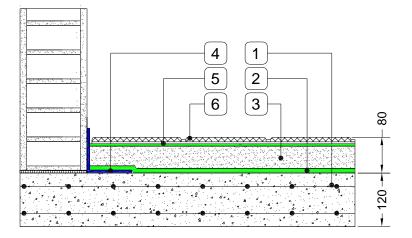

Under ceramic floor

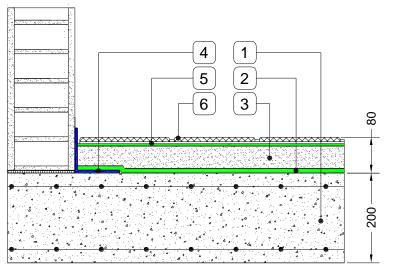
120 mm concrete slab

- 1. Concrete slab, 120 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 3. Acoustic insulating bands made of polyethylene with a self adhesive film on one side for ease of application, 50 mm height
- 4. Ceramic tile, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Sylcer 3	68	51	2.35	Page 96	Page 130	Page 169	Page 185	

- 1. Concrete slab, 200 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 3. Acoustic insulating bands made of polyethylene with a self adhesive film on one side for ease of application, 50 mm height
- 4. Ceramic tile, 10 mm thickness

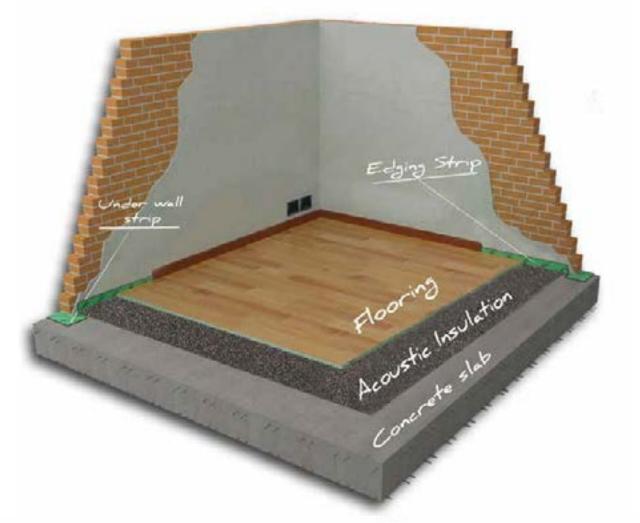

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Sylcer 3	61	55	2.17	Page 96	Page 130	Page 169	Page 185	


120 mm concrete slab with floating screed

- 1. Concrete slab, 120 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 3. Sand and cement screed, 50 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 6. Ceramic tile, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Sylcer 3	60	54	1.99		Page 126 – 130	Page 168 - 169	Page 185	
Roll 7 – Sylcer 3	55	54	1.88		Page 120 – 130	Page 168 - 169	Page 182 – 185	
Grei 5 – Sylcer 3	53	54	1.87		Page 122 – 130	Page 168 - 169	Page 183 – 185	
Upgrei 8 – Sylcer 3	49	54	1.76	Page 97	Page 124 – 130	Page 168 - 169	Page 184 – 185	

200 mm concrete slab with floating screed



- 1. Concrete slab, 200 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 3. Sand and cement screed, 100 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 6. Ceramic tile, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Sylcer 3	54	58	1.86		Page 126 – 130	Page 168 - 169	Page 185	
Roll 7 – Sylcer 3	49	58	1.77		Page 120 – 130	Page 168 - 169	Page 182 – 185	
Grei 5 – Sylcer 3	47	58	1.75	Page 97	Page 122 – 130	Page 168 - 169	Page 183 – 185	
Upgrei 8 – Sylcer 3	42	58	1.66		Page 124 – 130	Page 168 - 169	Page 184 – 185	

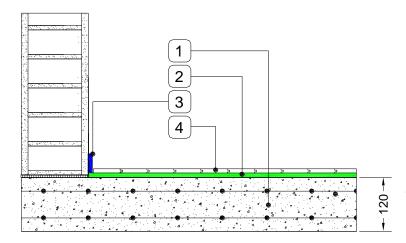
Under wooden floor

Acoustic insulation under a floor finishing is required in the case of floor / building renovations or when there is a need to upgrade the existing floating floor performance.

The Isolgomma resilient layer is placed directly under the floor finishing such us parquet, carpet or other synthetic type flooring in order to get the floor floating over the resilient layer.

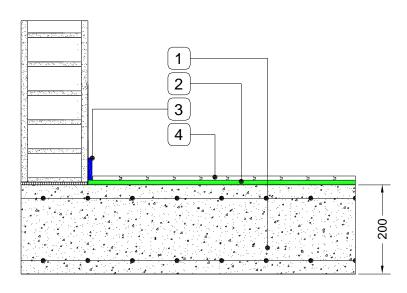
<u>Under-Wall Strip</u>: under any wall or partition a resilient strip is needed in order to prevent the transfer of structural vibration or noise to the floor and vice versa.

<u>Levelling Screed</u>: if there is piping located over the floor base, a levelling screed is required in order to produce a uniform flat surface on which the resilient layer will be placed.


<u>Screed</u>: a traditional mixture of sand and cement or a "self-levelling" proprietary screed mixture. The important point here is to achieve a uniform thickness .

<u>Acoustic Insulation</u>: must be laid down on a clean flat concrete base. It can be glued to the base using an elastic adhesive.

<u>Floor Finishing</u>: it can be any type of parquet, carpet or synthetic elastic flooring. Installed dry or using any elastic adhesive. If the adhesive is too rigid and not compatible with the elastic layer it could reduce the final acoustic performance.

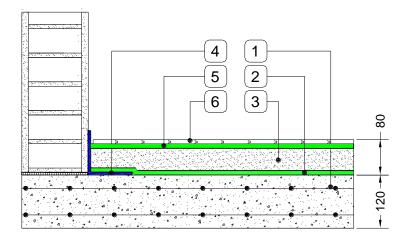


120 mm concrete slab

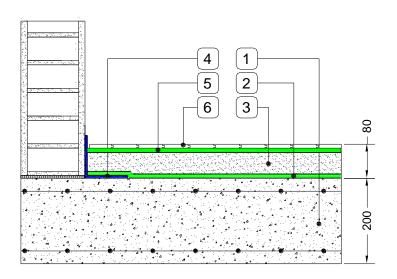
- 1. Concrete slab, 120 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR and cork. Thickness is between 3-5 mm
- 3. Acoustic insulating bands made of polyethylene with a self adhesive film on one side for ease of application, 50 mm height
- 4. Parquet floor finish, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Sylwood 3 with glue	67	51	2.16		Page 132	Page 169	Page 186	
Sylwood 3 dry installation	63	51	2.16	Page 98	Page 132	Page 169	Page 186	
Sylwood 5 dry installation	63	51	2.09		Page 132	Page 169		

- 1. Concrete slab, 200 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR and cork. Thickness is between 3-5 mm
- 3. Acoustic insulating bands made of polyethylene with a self adhesive film on one side for ease of application, 50 mm height
- 4. Parquet floor finish, 10 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Sylwood 3 with glue	61	55	2.01		Page 132	Page 169	Page 186	
Sylwood 3 dry installation	58	55	2.01		Page 132	Page 169	Page 186	
Sylwood 5 dry installation	58	55	1.95	Page 98	Page 132	Page 169		

Under wooden floor


120 mm concrete slab with floating screed

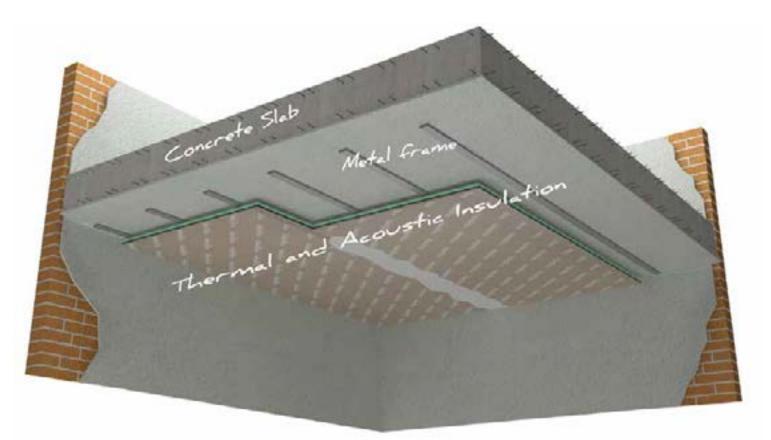
- 1. Concrete slab, 120 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 3. Sand and cement screed, 50 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 6. Parquet floor finish, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Grei 8 - Sylwood 3 with glue	50	54	1.69		Page 122 – 132	Page 168 – 169	Page 184 – 186	
Grei 8 - Sylwood 3 dry installation	47	54	1.69		Page 122 – 132	Page 168 – 169	Page 184 – 186	
Grei 8 - Sylwood 5 dry installation	47	54	1.69	Page 99	Page 122 – 132	Page 168 – 169	Page 184	

200 mm concrete slab with floating screed

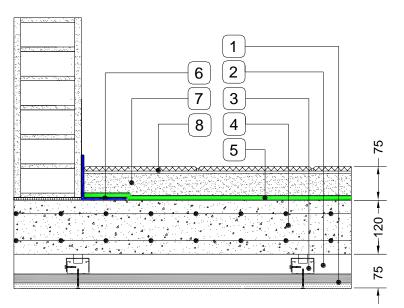
- 1. Concrete slab, 200 mm thickness
- 2. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 3. Sand and cement screed, 100 mm thickness
- 4. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 5. Acoustic insulation supplied in rolls and produced using granules of SBR or EPDM rubber, 3 mm thickness
- 6. Parquet floor finish, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 - Sylwood 3 with glue	51	58	1.73	Page 99	Page 120 – 132	Page 168 – 169	Page 182 – 186	
Roll 7 - Sylwood 3 dry installation	48	58	1.73		Page 120 – 132	Page 168 – 169	Page 182 – 186	
Roll 7- Sylwood 5 dry installation	48	58	1.73		Page 120 – 132	Page 168 – 169	Page 182	

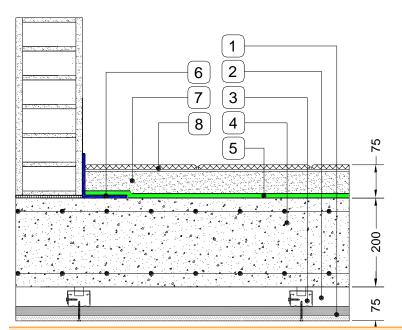

CEILINGS INSULATION

Coated ceiling

The coated ceiling is typically used to increase the thermal and acoustic performance of existing floors. It is the ideal solution to increase acoustic and thermal insulation in limited space.


<u>Acoustic insulation:</u> the choice is based on different variables: the available space, the desired acoustic and thermal insulation. The increase in acoustic and thermal insulation depends on the thickness, because the more space is used for the covering, the better will be the values of acoustic and thermal insulation. The coated ceiling solution allows to insulate the ceiling with a thickness less than 10 cm.

<u>Steel structure</u>: the fastening of the insulating boards can be done directly to the ceiling, but to grant a better adherence and a safer fastening, it is strongly recommended a steel structure. In the case of a beam and hollow block floor or similar, the fastening of the structure must be done on the concrete beams. It is important to adopt damped hangers for the fastening of the steel structures.


120 mm concrete slab

- 1. 40 mm-thick acoustic insulation coupled panels, composed of the following: an 20 mm-thick fiber panel produced using granules of SBR rubber, a 12.5 mm-thick plaster covered slab. The panels are 1.20 m wide x 2.00 m hight.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 120 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness

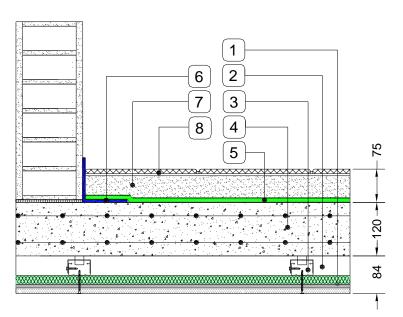
Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Mustwall 33B	58	61	0.77		Page 126 – 136	Page 168 – 170		
Roll 7 – Mustwall 33B	53	61	0.76		Page 120 – 136	Page 168 – 170		
Grei 5 – Mustwall 33B	51	61	0.76	Page 100	Page 122 – 136	Page 168 – 170		
Upgrei 8 – Mustwall 33B	47	61	0.70		Page 124 – 136	Page 168 – 170		

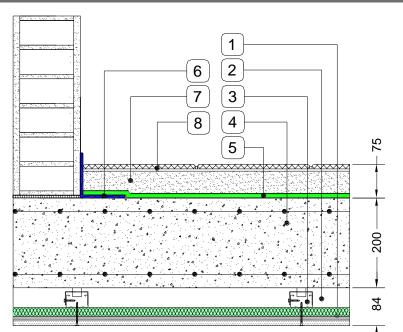
200 mm concrete slab

- 1. 40 mm-thick acoustic insulation coupled panels, composed of the following: an 20 mm-thick fiber panel produced using granules of SBR rubber, a 12.5 mm-thick plaster covered slab. The panels are 1.20 m wide x 2.00 m hight.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 200 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness

ISOIGOMMA

8. Ceramic tile, 10 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Mustwall 33B	50	65	0.75		Page 126 – 136	Page 168 – 170		
Roll 7 – Mustwall 33B	45	65	0.74		Page 120 – 136	Page 168 – 170		
Grei 5 – Mustwall 33B	43	65	0.74		Page 122 – 136	Page 168 – 170		
Upgrei 8 – Mustwall 33B	39	65	0.69	Page 100	Page 124 – 136	Page 168 – 170		

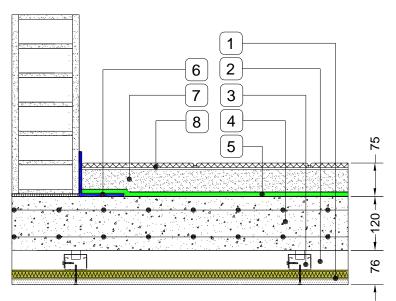

120 mm concrete slab

- 33 mm-thick acoustic insulation coupled panels: a 20 mm-thick polyester fiber panel and a 12.5 mm-thick plaster covered slab (Rewall 33B). 40 mm-thick acoustic insulation coupled panels: an 8mm-thick SBR rubber panel a 20 mm-thick polyester fiber panel, and a 12.5 mm-thick plaster covered slab (Rewall 40). The panels are 1.20 m wide x 2.00 m hight.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 120 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using SBR or EPDM rubber. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness

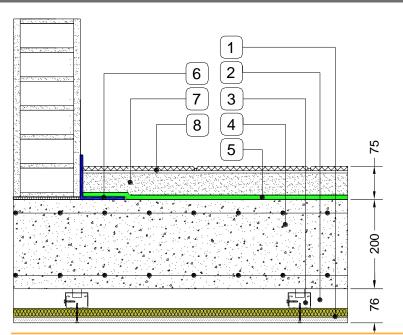
Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Rewall 33B	53	61	0.73		Page 120 – 141	Page 168 – 170		
Roll 7 – Rewall 40	52	62	0.69		Page 120 – 140	Page 168 – 170		
Grei 5 – Rewall 33B	51	61	0.73		Page 122 – 141	Page 168 – 170		
Grei 5 – Rewall 40	50	62	0.69	Page 101	Page 122 – 140	Page 168 – 170		

200 mm concrete slab

- 1. 33 mm-thick acoustic insulation coupled panels: a 20 mm-thick polyester fiber panel and a 12.5 mm-thick plaster covered slab (Rewall 33B). 40 mm-thick acoustic insulation coupled panels: an 8mm-thick SBR rubber panel a 20 mm-thick polyester fiber panel, and a 12.5 mm-thick plaster covered slab (Rewall 40). The panels are 1.20 m wide x 2.00 m hight.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 200 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using SBR or EPDM rubber. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Rewall 33B	45	65	0.71		Page 120 – 141	Page 168 – 170		
Roll 7 – Rewall 40	44	66	0.67	Page 101	Page 120 – 140	Page 168 – 170		
Grei 5 – Rewall 33B	43	65	0.71		Page 122 – 141	Page 168 – 170		
Grei 5 – Rewall 40	42	66	0.67		Page 122 – 140	Page 168 – 170		

Coated ceiling


120 mm concrete slab

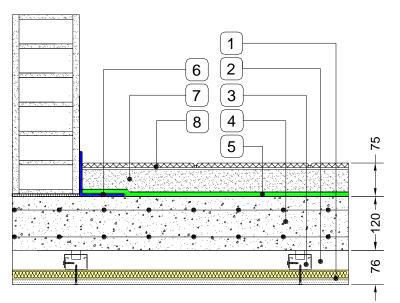
- 1. 33 mm-thick acoustic insulation coupled panels, composed of thefollowing: a 20 mm-thick Kenaf fiber panel, and a 12.5 mm thick plaster covered slab. The panels are 1.20 m wide x 2.00 m hight
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 120 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Natur 33B	58	61	0.72		Page 126 – 144	Page 168 – 170		
Roll 7 – Natur 33B	53	61	0.71		Page 120 – 144	Page 168 – 170		
Grei 5 – Natur 33B	51	61	0.70	Page 102	Page 122 – 144	Page 168 – 170		
Upgrei 8 – Natur 33B	47	61	0.66		Page 124 – 144	Page 168 – 170		

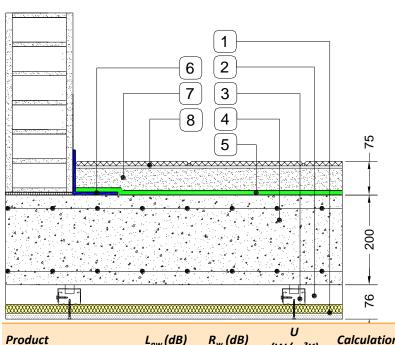
200 mm concrete slab

- 1. 33 mm-thick acoustic insulation coupled panels, composed of thefollowing: a 20 mm-thick Kenaf fiber panel, and a 12.5 mm thick plaster covered slab. The panels are 1.20 m wide x 2.00 m hight
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 200 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness

ISOIGOMMA


8. Ceramic tile, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Syl 5 – Natur 33B	50	65	0.70		Page 126 – 144	Page 168 – 170		
Roll 7 – Natur 33B	45	65	0.69	Page 102	Page 120 – 144	Page 168 – 170		
Grei 5 – Natur 33B	43	65	0.69		Page 122 – 144	Page 168 – 170		
Upgrei 8 – Natur 33B	39	65	0.65		Page 124 – 144	Page 168 – 170		


120 mm concrete slab

- 1. 33 mm-thick acoustic insulation coupled panels: a 20 mm-thick mineral rock wool panel and a 12.5 mm-thick plaster covered slab (Mineral 33B). 40 mm-thick acoustic insulation coupled panels: an 8mm-thick SBR rubber panel a 20 mm-thick rock wool panel, and a 12.5 mm-thick plaster covered slab (Mineral 40RB). The panels are 1.20 m wide x 2.00 m hight.
- 2. Air cavity, 35 mm thickness
- Metal frame 3.
- 4. Concrete slab, 120 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using SBR or EPDM rubber. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness 8
- Ceramic tile, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Mineral 33B	53	61	0.76		Page 120 – 148	Page 168 – 170		
Roll 7 – Mineral 40RB	52	62	0.72		Page 120 – 149	Page 168 – 170		
Grei 5 – Mineral 33B	51	61	0.76	Page 103	Page 122 – 148	Page 168 – 170		
Grei 5 – Mineral 40RB	50	62	0.72		Page 122 – 149	Page 168 – 170		

200 mm concrete slab

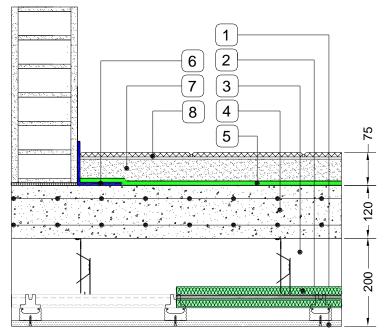
- 1. 33 mm-thick acoustic insulation coupled panels: a 20 mm-thick mineral rock wool panel and a 12.5 mm-thick plaster covered slab (Mineral 33B). 40 mm-thick acoustic insulation coupled panels: an 8mm-thick SBR rubber panel a 20 mm-thick rock wool panel, and a 12.5 mm-thick plaster covered slab (Mineral 40RB). The panels are 1.20 m wide x 2.00 m hight.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 200 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using SBR or EPDM rubber. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8 Ceramic tile, 10 mm thickness

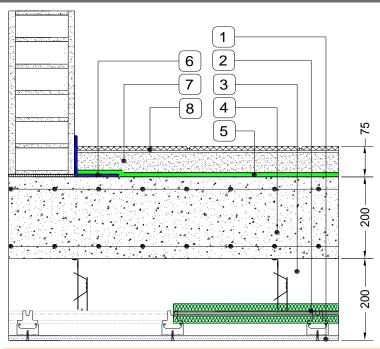
Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Mineral 33B	45	65	0.74		Page 120 – 148	Page 168 – 170		
Roll 7 – Mineral 40RB	44	66	0.70	Page 103	Page 120 – 149	Page 168 – 170		
Grei 5 – Mineral 33B	43	65	0.74		Page 122 – 148	Page 168 – 170		
Grei 5 – Mineral 40RB	42	66	0.70		Page 122 – 149	Page 168 – 170		

Suspended ceiling

The suspended ceiling is largely used in commercial buildings. It is an interesting solution because it allows the installation of air ducts for heating, cooling and air conditioning in the space between upper floor and finishing, wich can also be large. It allows also the installation of all the other service equipments, before finishing.

<u>Acoustic insulation:</u> the choice is based on different variables: the space available over the steel structure, the desired acoustic and thermal insulation. The increase in acoustic and thermal insulation depends on the dimension of the cavity and the thickness of the insulation layer. The suspended ceiling solution allows to insulate the ceiling with a thickness more than 10 cm.


<u>Steel structure</u>: the steel structure is fixed with hangers, to suspend the guides and profiles for the fastening of the plasterboards or alternatively the suspended absorption squared boards. In the case of a beam and hollow block floor or similar, the fastening of the hangers should be done on the concrete beams. It is important to adopt damped hangers for the fastening of the steel structures.

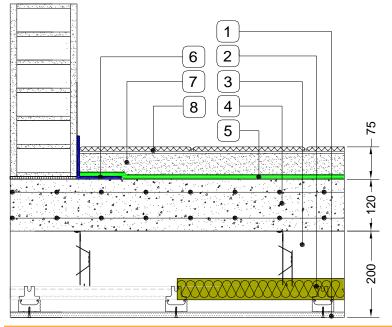

120 mm concrete slab

- 1. 30 or 50 mm-thick acoustic insulation made in polyesther fibre (Fybro 30 or 50); 48 mm-thick acoustic insulation coupled panels: an 8mmthick SBR rubber panel, and double layer of 20 mm-thick polyester fiber panel (Trywall 48); the panels are 0.60 m wide x 1.20 m hight.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 120 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using SBR or EPDM rubber. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness

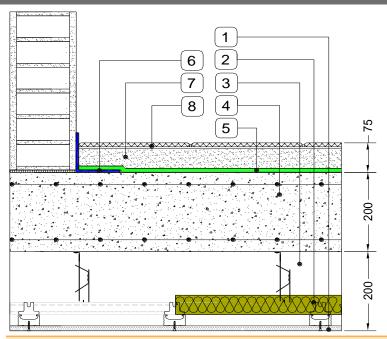
Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Grei 5 – Fybro 30	51	62	0.57		Page 122 – 137	Page 168 – 171		
Grei 5 – Fybro 50	51	62	0.43		Page 122 – 137	Page 168 – 171		
Grei 5 – Trywall 48	50	63	0.51	Page 104	Page 122 – 139	Page 168 – 171		

200 mm concrete slab

- 1. 30 or 50 mm-thick acoustic insulation made in polyesther fibre (Fybro 30 or 50); 48 mm-thick acoustic insulation coupled panels: an 8mm-thick SBR rubber panel, and double layer of 20 mm-thick polyester fiber panel (Trywall 48); the panels are 0.60 m wide x 1.20 m hight.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 200 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using SBR or EPDM rubber. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Grei 5 – Fybro 30	42	66	0.56		Page 122 – 137	Page 168 – 171		
Grei 5 – Fybro 50	42	66	0.43		Page 122 – 137	Page 168 – 171		
Grei 5 – Trywall 48	41	67	0.50	Page 104	Page 122 – 139	Page 168 – 171		

Suspended ceiling


120 mm concrete slab

- Airborne noise insulation in 30 or 50 mm made of Kenaf fibers; density 50 kg/m³. Panels dimensions: 1.20 m length, 0.60 m width.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 120 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness

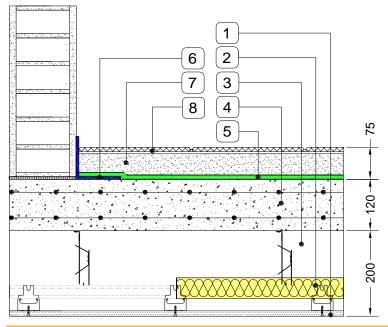
Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Natur 30	53	62	0.56		Page 120 – 143	Page 168 – 171		
Roll 7 – Natur 50	53	62	0.43		Page 120 – 143	Page 168 – 171		
Grei 5 – Natur 30	51	62	0.56		Page 122 – 143	Page 168 – 171		
Grei 5 – Natur 50	51	62	0.42	Page 105	Page 122 – 143	Page 168 – 171		

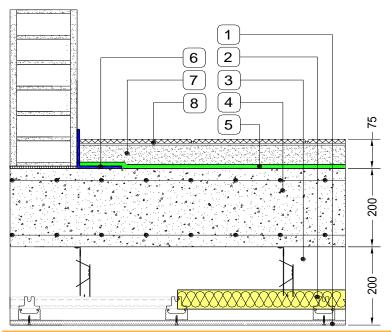
200 mm concrete slab

- 1. Airborne noise insulation in 30 or 50 mm made of Kenaf fibers; density 50 kg/m³. Panels dimensions: 1.20 m length, 0.60 m width.
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 200 mm thickness
 - 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness

ISOIGOMMA

8. Ceramic tile, 10 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Natur 30	44	66	0.55		Page 120 – 143	Page 168 – 171		
Roll 7 – Natur 50	44	66	0.42	Page 105	Page 120 – 143	Page 168 – 171		
Grei 5 – Natur 30	42	66	0.55		Page 122 – 143	Page 168 – 171		
Grei 5 – Natur 50	42	66	0.42		Page 122 – 143	Page 168 – 171		

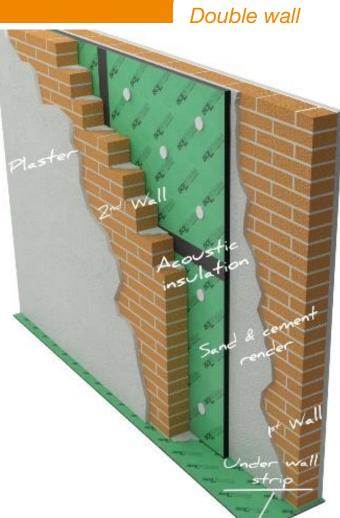

120 mm concrete slab

- Acoustic and thermal insulation in 50 mm thick made in rock wool; density 50 or 70 kg/m³. Panels dimensions: 1.00 m lengh, 0.60 m width
- 2. Air cavity, 35 mm thickness
- 3. Metal frame
- 4. Concrete slab, 120 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness

Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Mineral 50-50	53	62	0.56		Page 120 – 145	Page 168 – 171		
Roll 7 – Mineral 50-70	53	62	0.43		Page 120 – 145	Page 168 – 171		
Grei 5 – Mineral 50-50	51	62	0.56		Page 122 – 145	Page 168 – 171		
Grei 5 – Mineral 50-70	51	62	0.42	Page 106	Page 122 – 145	Page 168 – 171		

200 mm concrete slab

- Acoustic and thermal insulation in 50 mm thick made in rock wool; density 50 or 70 kg/m³. Panels dimensions: 1.00 m lengh, 0.60 m width
- Air cavity, 35 mm thickness
 Metal frame
- 3. Metal frame
- 4. Concrete slab, 200 mm thickness
- 5. Acoustic insulation supplied in rolls and produced using fibres and granules of SBR or granules of EPDM. Thickness is between 4-10 mm
- 6. Acoustic insulating bands pre-shaped in an angular profile made of polyethylene with a self adhesive film on one side for ease of application. The dimensions are: base 50 mm, height 150 mm
- 7. Sand and cement floating screed, 50 mm thickness
- 8. Ceramic tile, 10 mm thickness


Product	L _{nw} (dB)	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Roll 7 – Mineral 50-50	44	66	0.55		Page 120 – 145	Page 168 – 171		
Roll 7 – Mineral 50-70	44	66	0.42	Page 106	Page 120 – 145	Page 168 – 171		
Grei 5 – Mineral 50-50	42	66	0.55		Page 122 – 145	Page 168 – 171		
Grei 5 – Mineral 50-70	42	66	0.42		Page 122 – 145	Page 168 – 171		

WALLS INSULATION

The double wall system is commonly used to separate two independent housing units. This kind of wall is normally made of solid or hollow blocks. The insulation elements are placed within the centre cavity with the purpose of creating an elastic and absorbing panel to improve the acoustic properties of the wall system.

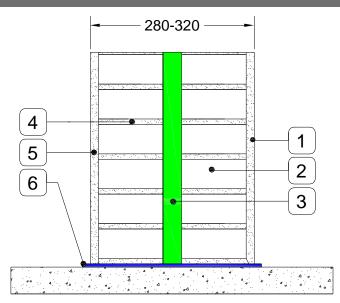
<u>Under-Wall Strip</u>: under any wall or partition a resilient strip is needed in order to prevent the transfer of structural vibration or noise to the floor and vice versa.

<u>Plaster</u>: the finishing layer is generally made of gypsum plaster which, from an acoustic point of view, is used to seal any gaps in the brick wall and contribute to the overall wall mass.

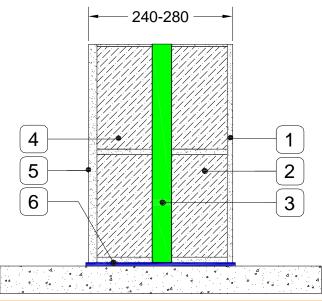
<u>Wall 1</u>: composed of different sizes of bricks, depending on wall specification, which are jointed together with mortar. It is very important that horizontal and vertical joints are properly sealed with sufficient mortar.

Sand & Cement Render: from an acoustic point of view this seals any gaps in the brick wall and contributes to the overall wall mass.

<u>Acoustic Insulation</u>: fixed to the wall by mechanical nailing or adhesive. The desired outcome is to create an uniform acoustic layer separating the two walls, improving greatly the overall acoustic performance of the wall system.

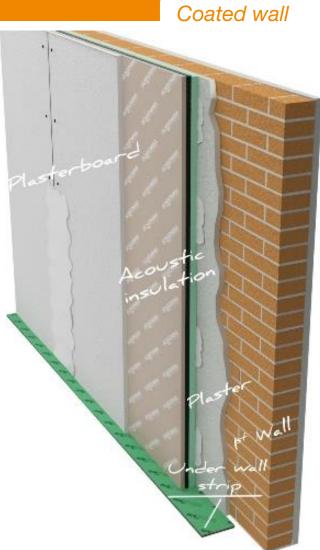

Wall 2: composed of different sizes of bricks, depending on wall specification, which are jointed together with mortar. It is very important that horizontal and vertical joints are properly sealed with sufficient mortar.

<u>Plaster</u>: the finishing layer is generally made from gypsum plaster which, from an acoustic point of view, is used to seal any gaps in the brick wall and contribute to the overall wall mass.


Double brick wall

- 1. Plaster, 15 mm thickness
- 2. Brick wall, 120 mm thickness
- 3. 10-50 mm acoustic insulation panel
- 4. Brick wall, 120 mm thickness
- 5. Plaster, 15 mm thickness
- 6. Underwall strip: acoustic insulation supplied in rolls and produced using fibres and granules of SBR rubber.

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mustwall 10	54	1.38		Page 134	Page 172		
Mustwall 20	56	1.23		Page 134	Page 172	Page 187	
Fybro 30	54	0.68		Page 137	Page 173		
Mineral 50/50	55	0.49		Page 145	Page 173		
Biwall 40	56	0.67	Page 107	Page 138	Page 172		
Mineral 50R	56	0.55		Page 146	Page 172	Page 188	


Double light concrete wall

- 1. Plaster, 15 mm thickness
- 2. Cellular concrete wall, 100 cm thickness
- 3. Plaster, 10 mm thickness
- 4. 10-50 mm acoustic insulation panel
- 5. Cellular concrete wall, 100 cm thickness
- 6. Plaster, 15 cm thickness
- 7. Underwall strip: acoustic insulation supplied in rolls and produced using fibres and granules of SBR rubber.

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mustwall 10	53	0.57		Page 134	Page 172		
Mustwall 20	55	0.54		Page 134	Page 172		
Fybro 30	53	0.40		Page 137	Page 173		
Mineral 50/50	54	0.32		Page 145	Page 173		
Biwall 40	55	0.40	Page 107	Page 138	Page 172	Page 189	
Mineral 50R	55	0.35		Page 146	Page 172		

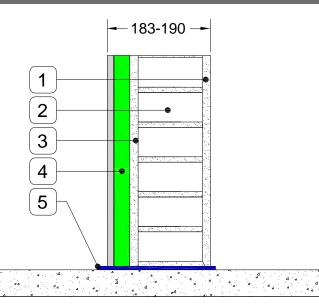
A coated wall is used for renovation or to improve an existing wall performance. This system focuses on increasing the acoustic performance with a limited increase in the wall thickness. This solution can be adopted when a wall needs to be upgraded to meet local building regulations. The system features a traditional block wall on which a light wall system is installed consisting of acoustic panels with plasterboard finishing.

<u>Under wall strip</u>: under any partition an elastic rubber Stywall strip must be placed to minimise any sound and vibration transmission from the wall to the floor. The minimum width of the strip width must be equal to the total wall width.

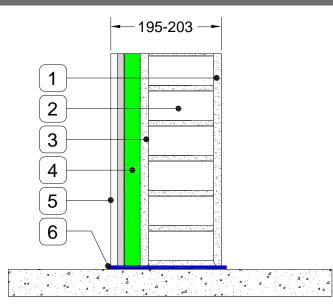
<u>Plaster 1</u>: the finishing layer is generally made from gypsum plaster which, from an acoustic point of view, is used to seal any gaps in the brick wall and contribute to the overall wall mass.

<u>Wall</u>: composed of different sizes of bricks, depending on wall specification, which are jointed together with mortar. It is very important that horizontal and vertical joints are properly sealed with sufficient mortar.

<u>Plaster 2</u>: the finishing layer is generally made from gypsum plaster which, from an acoustic point of view, is used to seal any gaps in the brick wall and contribute to the overall wall mass.


<u>Acoustic Insulation</u>: fixed to the wall by mechanical nailing or adhesive. The desired outcome is to create an uniform acoustic layer separating the structural wall from the gypsum board. This coating can be done on both sides of the structural wall.

<u>Plasterboard</u>: external side of the wall system made up of one or more layers of plasterboard. These boards can also be of different thicknesses and between the boards an additional acoustic layer such as Syl, can be placed to improve the acoustic insulation.

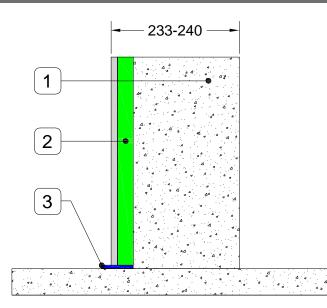

120 mm brick wall

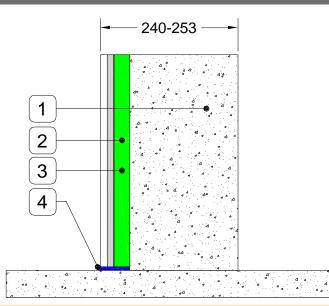
- 1. Plaster, 15 mm thickness
- 2. Brick wall, 120 mm thickness
- 3. Plaster, 15 mm thickness
- 4. 10-50 mm acoustic insulation panel
- 5. Underwall strip: acoustic insulation supplied in rolls and produced using fibres and granules of SBR rubber.

R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
53	1.45	Page 108	Page 136	Page 175		
53	0.87		Page 141	Page 175		
56	0.82		Page 140	Page 175		
53	0.84		Page 144	Page 175		
53	0.91		Page 148	Page 175		
56	0.86		Page 149	Page 175		
	53 53 56 53 53 53	Rw (dB) (W/m²K) 53 1.45 53 0.87 56 0.82 53 0.84 53 0.91	Rw (dB) (W/m²K) Calculation 53 1.45 Page 108 53 0.87 56 0.82 53 0.84 53 0.91	R _w (dB) (W/m²K) Calculation Product data 53 1.45 Page 108 Page 136 53 0.87 Page 141 56 0.82 Page 140 53 0.84 Page 144 53 0.91 Page 148	R _w (dB) (W/m²K) Calculation Product data Installation 53 1.45 Page 108 Page 136 Page 175 53 0.87 Page 141 Page 175 56 0.82 Page 140 Page 175 53 0.84 Page 144 Page 175 53 0.91 Page 148 Page 175	R, (dB) (W/m²K) Calculation Product data Installation Lab test 53 1.45 Page 108 Page 136 Page 175 53 0.87 Page 141 Page 175 56 0.82 Page 140 Page 175 53 0.84 Page 144 Page 175 53 0.91 Page 148 Page 175

120 mm brick wall with plasterboard

- 1. Plaster, 15 mm thickness
- 2. Brick wall, 120 mm thickness
- 3. Plaster, 15 mm thickness
- 4. 10-50 mm acoustic insulation panel
- 5. Plasterboard layer, 12.5 mm thickness
- 6. Underwall strip: acoustic insulation supplied in rolls and produced using fibres and granules of SBR rubber.

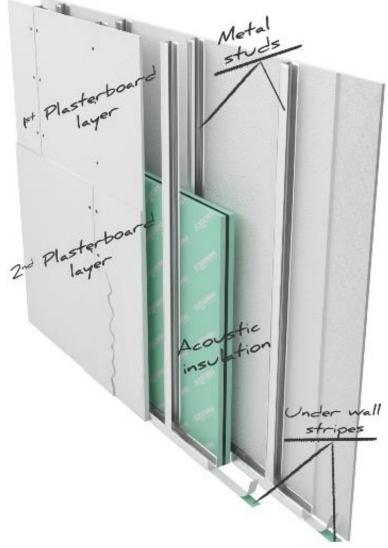

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mustwall 33B	54	1.33		Page 134	Page 175	Page 189	
Rewall 33B	55	0.83		Page 141	Page 175	Page 190	
Rewall 40	57	0.78		Page 140	Page 175		
Natur 33B	55	0.80		Page 144	Page 175		
Mineral 33B	55	0.87		Page 148	Page 175		
Mineral 40RB	57	0.81	Page 108	Page 149	Page 175	Page 190	


200 mm concrete wall

- 1. Concrete wall, 200 mm thickness
- 2. 10-50 mm acoustic insulation panel
- 3. Underwall strip: acoustic insulation supplied in rolls and produced using fibres and granules of SBR rubber.

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mustwall 33B	58	1.74		Page 136	Page 175		
Rewall 33B	58	0.97		Page 141	Page 175		
Rewall 40	61	0.90		Page 140	Page 175		
Natur 33B	58	0.93	Page 109	Page 144	Page 175		
Mineral 33B	58	1.02		Page 148	Page 175		
Mineral 40RB	61	0.95		Page 149	Page 175		

200 mm concrete wall with plasterboard



- 1. Concrete wall, 200 mm thickness
- 2. 10-50 mm acoustic insulation panel
- 3. Plasterboard layer, 12.5 mm thickness
- 4. Underwall strip: acoustic insulation supplied in rolls and produced using fibres and granules of SBR rubber.

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mustwall 33B	59	1.57		Page 136	Page 175		
Rewall 33B	60	0.91		Page 141	Page 175		
Rewall 40	62	0.86	Page 109	Page 140	Page 175		
Natur 33B	60	0.88		Page 144	Page 175		
Mineral 33B	60	0.96		Page 148	Page 175		
Mineral 40RB	62	0.90		Page 149	Page 175		

Plasterboard wall

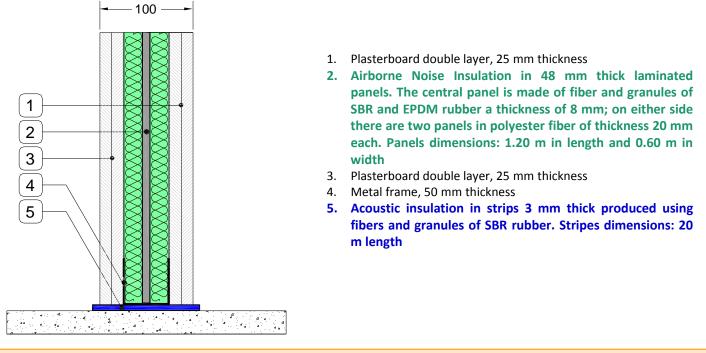
The Plasterboard wall system (also called a dry wall or gypsumboard wall) is made of two layers of plasterboards which are fixed on a single or double metallic frame structure. Typically in the centre of the metal structure a panel of acoustic and thermal insulation is placed.

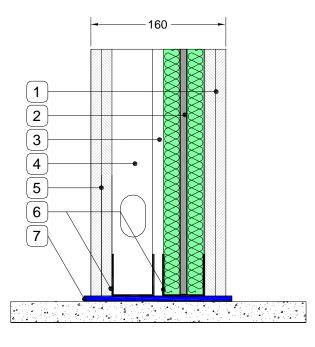
<u>Under wall strip</u>: under any partition an elastic rubber Stywall strip must be placed to minimise any sound and vibration transmission from the wall to the floor. The minimum width of the strip width must be equal to the total wall width.

<u>Plasterboard 1</u>: external side of the wall system made up of one or more layers of plasterboard. These boards can also be of different thicknesses and between the boards an additional acoustic layer such as Syl, can be placed to improve the acoustic insulation.

<u>Metal Frame</u>: the structural skeleton of the wall on which the external boards are fixed to. They are available in various different sizes depending on wall size and application. The acoustic panels are located inside this frame.

<u>Acoustic Insulation</u>: placed in the cavity of the plasterboard system. It is important that the full metal frame cavity is filled with the acoustic panel to achieve the best performance.

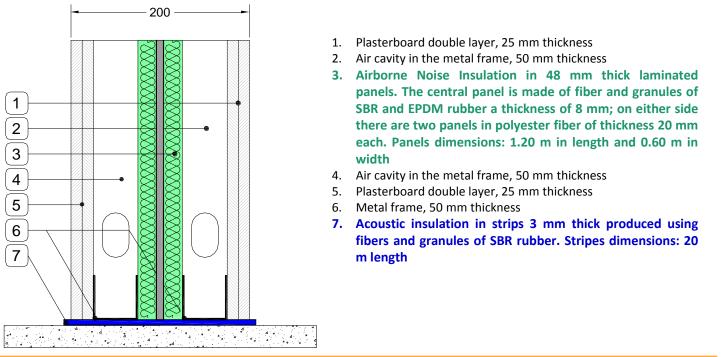

<u>Plasterboard 2</u>: External side of the wall system made up of one or more layers of plasterboard. These boards can also be of different thicknesses and between the boards an additional acoustic layer such as Syl, can be placed to improve the acoustic insulation.

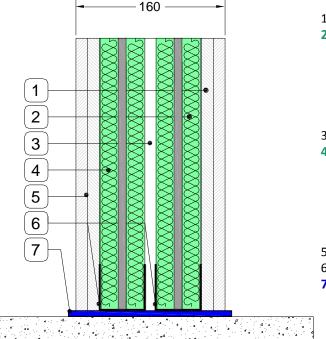


100 mm gypsum wall

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Trywall 48	54	0.66	Page 110	Page 139	Page 174	Page 191	

- 1. Plasterboard double layer, 25 mm thickness
- 2. Airborne Noise Insulation in 48 mm thick laminated panels. The central panel is made of fiber and granules of SBR and EPDM rubber a thickness of 8 mm; on either side there are two panels in polyester fiber of thickness 20 mm each. Panels dimensions: 1.20 m in length and 0.60 m in width
- 3. Air cavity, 10 mm thickness
- 4. Air cavity into metal frame, 50 mm thickness
- 5. Metal frame, 50 mm thickness
- 6. Plasterboard double layer, 25 mm thickness
- Acoustic insulation in strips 3 mm thick produced using fibers and granules of SBR rubber. Stripes dimensions: 20 m length

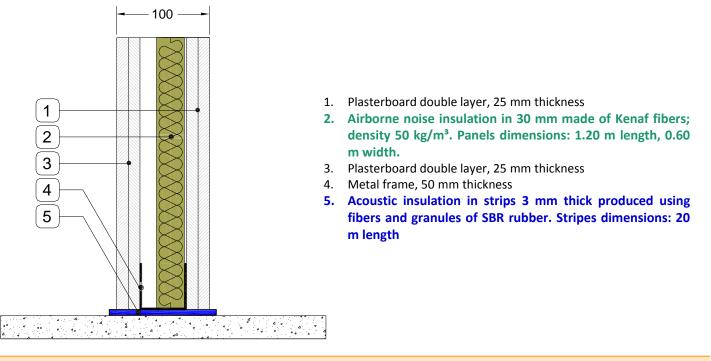

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Trywall 48	59	0.59	Page 110	Page 139	Page 174	Page 191	

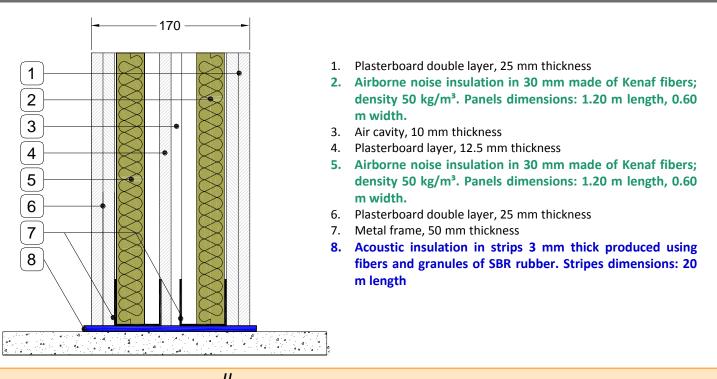


200 mm gypsum wall

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Trywall 48	60	0.59	Page 111	Page 139	Page 174	Page 192	

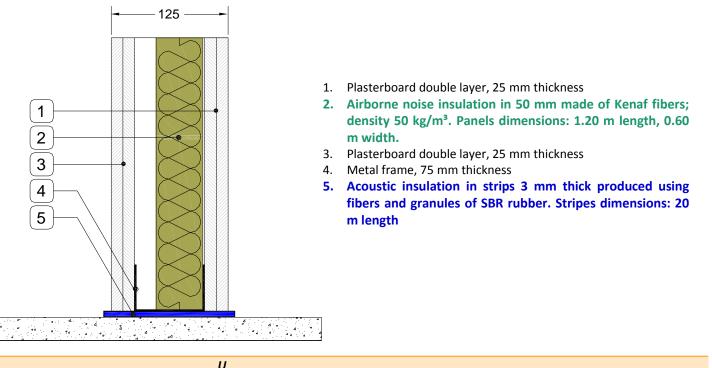
- 1. Plasterboard double layer, 25 mm thickness
- 2. Airborne Noise Insulation in 48 mm thick laminated panels. The central panel is made of fiber and granules of SBR and EPDM rubber a thickness of 8 mm; on either side there are two panels in polyester fiber of thickness 20 mm each. Panels dimensions: 1.20 m in length and 0.60 m in width
- 3. Air cavity, 10 mm thickness
- 4. Airborne Noise Insulation in 48 mm thick laminated panels. The central panel is made of fiber and granules of SBR and EPDM rubber a thickness of 8 mm; on either side there are two panels in polyester fiber of thickness 20 mm each. Panels dimensions: 1.20 m in length and 0.60 m in width
- 5. Plasterboard double layer, 25 mm thickness
- 6. Metal frame, 50 mm thickness
- 7. Acoustic insulation in strips 3 mm thick produced using fibers and granules of SBR rubber. Stripes dimensions: 20 m length


Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Trywall 48	63	0.37	Page 111	Page 13	Page 174	Page 192	

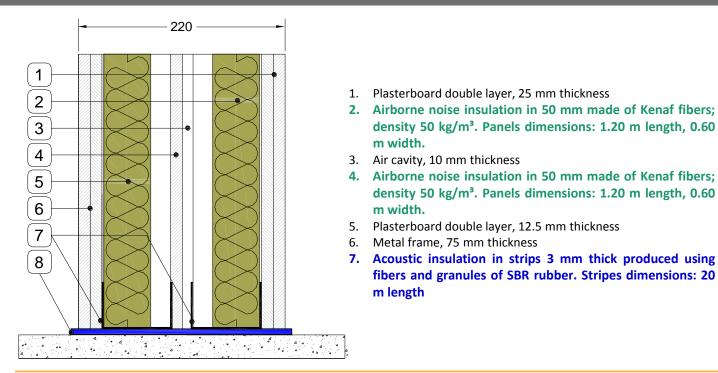


100 mm gypsum wall

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Natur 30	52	0.65	Page 112	Page 143	Page 174		

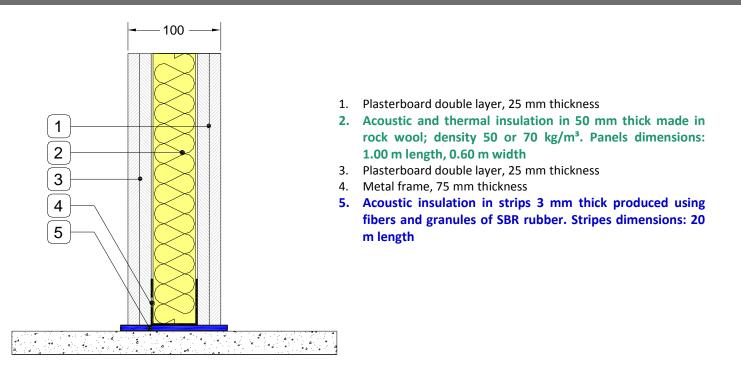


Product	R _w (dB)	(W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Natur 30	60	0.41	Page 112	Page 143	Page 174		

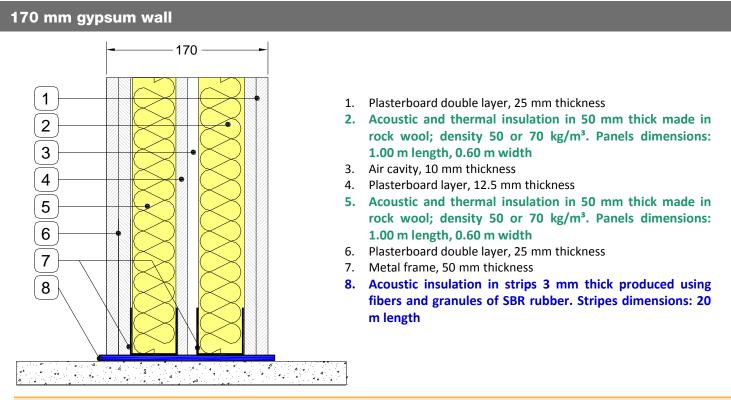


125 mm gypsum wall

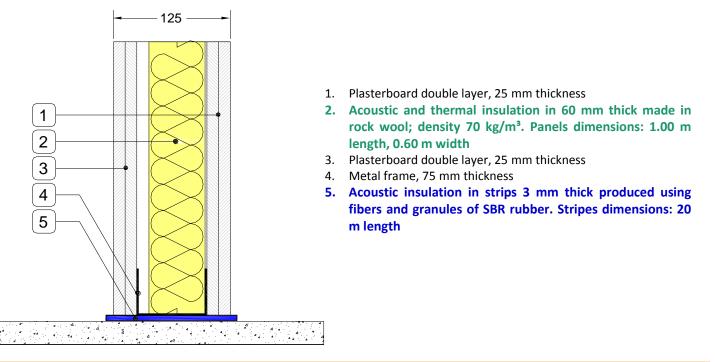
Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Natur 50	54	0.48	Page 113	Page 143	Page 174	Page 193	



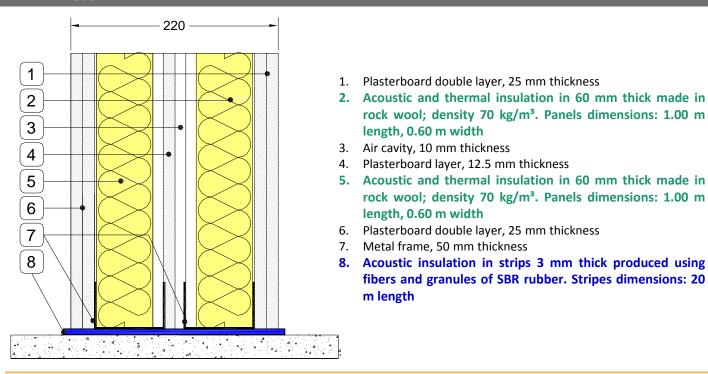
Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Natur 50	65	0.28	Page 113	Page 143	Page 174	Page 193	



Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 50-70	54	0.52	Page 114	Page 145	Page 174		

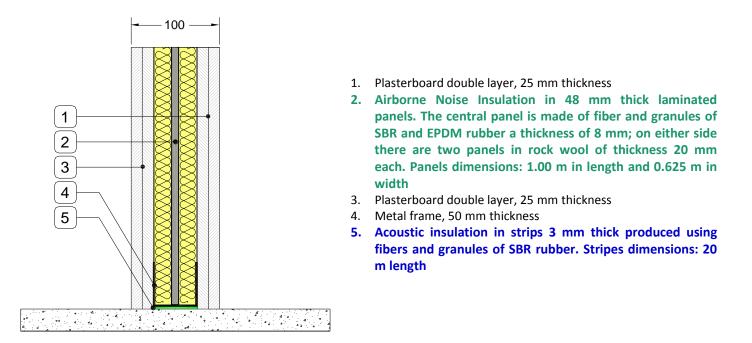


Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 50-70	63	0.47	Page 114	Page 145	Page 174		

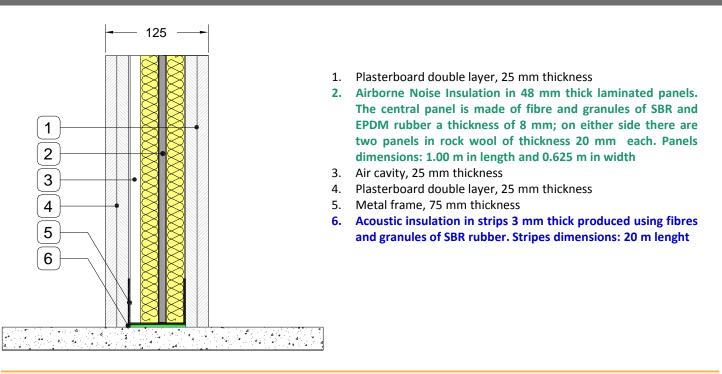


125 mm gypsum wall

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 60-70	57	0.42	Page 114	Page 145	Page 174	Page 196	

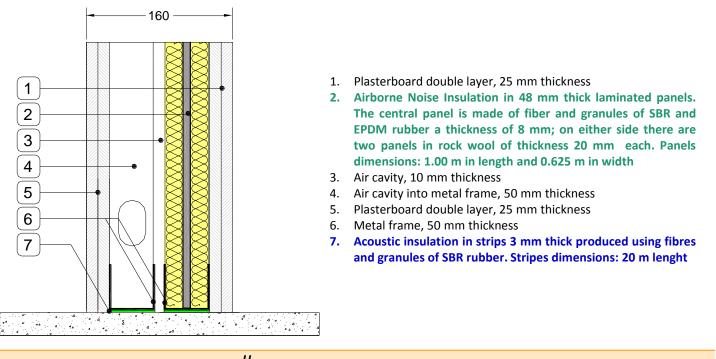


Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 60-70	67	0.24	Page 114	Page 145	Page 174		

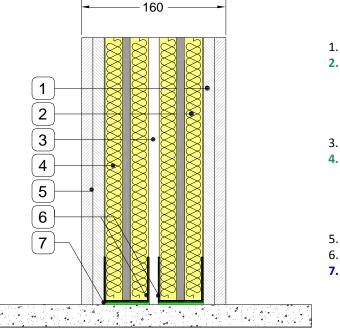


100 mm gypsum wall

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 48 RM	55	0.59	Page 116	Page 147	Page 174	Page 194	



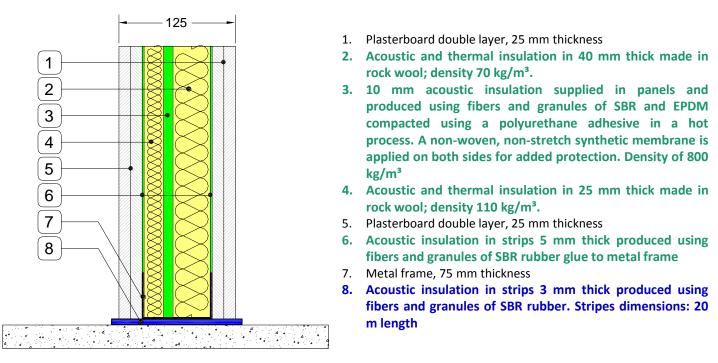
Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 48 RM	58	0.53	Page 116	Page 147	Page 174	Page 194	

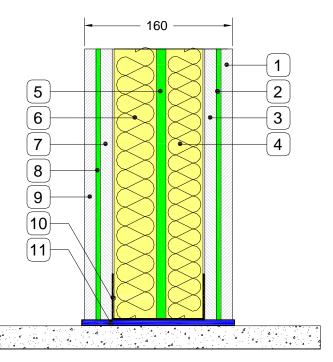


160 mm gypsum wall

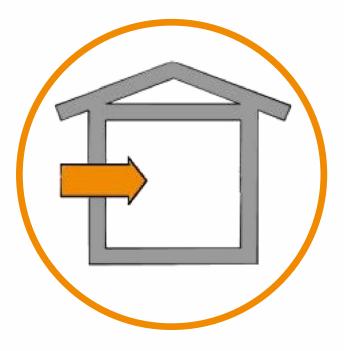
Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 48 RM	60	0.53	Page 117	Page 147	Page 174	Page 195	

- 1. Plasterboard double layer, 25 mm thickness
- 2. Airborne Noise Insulation in 48 mm thick laminated panels. The central panel is made of fiber and granules of SBR and EPDM rubber a thickness of 8 mm; on either side there are two panels in rock wool of thickness 20 mm each. Panels dimensions: 1.00 m in length and 0.625 m in width
- 3. Air cavity, 10 mm thickness
- 4. Airborne Noise Insulation in 48 mm thick laminated panels. The central panel is made of fiber and granules of SBR and EPDM rubber a thickness of 8 mm; on either side there are two panels in rock wool of thickness 20 mm each. Panels dimensions: 1.00 m in length and 0.625 m in width
- 5. Plasterboard double layer, 25 mm thickness
- 6. Metal frame, 50 mm thickness
- 7. Acoustic insulation in strips 3 mm thick produced using fibers and granules of SBR rubber. Stripes dimensions: 20 m length


Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mineral 48 RM	65	0.33	Page 117	Page 147	Page 174	Page 195	



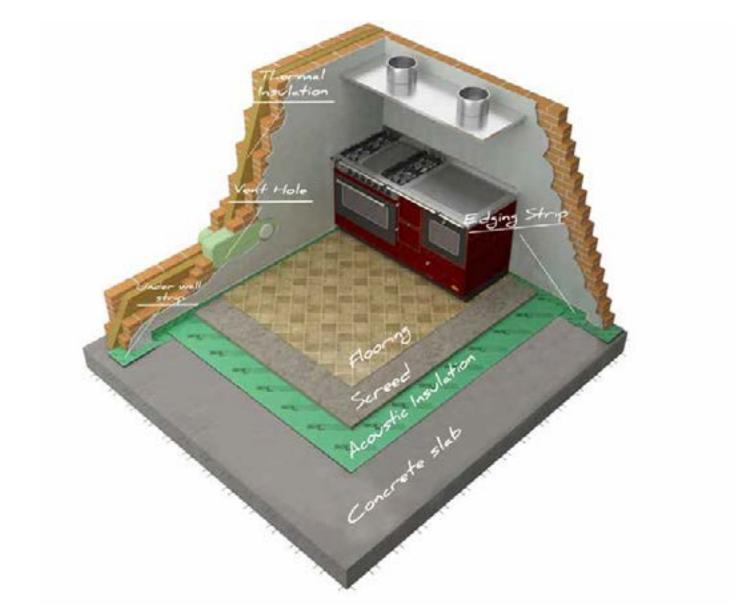
125 mm gypsum wall


Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mustwall 10	58	0.40	Page 118	Page 134	Page 174	Page 196	

- 1. Plasterboard, 12.5 mm thickness
- 2. Acoustic insulation 5 mm thick produced using fibres and granules of SBR rubber
- 3. Plasterboard, 12.5 mm thickness
- 4. Acoustic and thermal insulation in 40 mm thick made in rock wool; density 70 kg/m³.
- 5. 10 mm acoustic insulation supplied in panels and produced using fibers and granules of SBR and EPDM compacted using a polyurethane adhesive in a hot process. A non-woven, non-stretch synthetic membrane is applied on both sides for added protection. Density of 800 kg/m³
- 6. Acoustic and thermal insulation in 50 mm thick made in rock wool; density 110 kg/m³.
- 7. Plasterboard, 12.5 mm thickness
- 8. Acoustic insulation 5 mm thick produced using fibers and granules of SBR rubber
- 9. Plasterboard, 12.5 mm thickness
- 10. Metal frame, 75 mm thickness
- 11. Acoustic insulation in strips 3 mm thick produced using fibres and granules of SBR rubber. Stripes dimensions: 20 m lenght

Product	R _w (dB)	U (W/m²K)	Calculation	Product data	Installation	Lab test	Site test
Mustwall 10 – Syl 5	62	0.30	Page 118	Page 134 – 126	Page 174		

FACADES INSULATION



Facades insulation

Ventilation hole

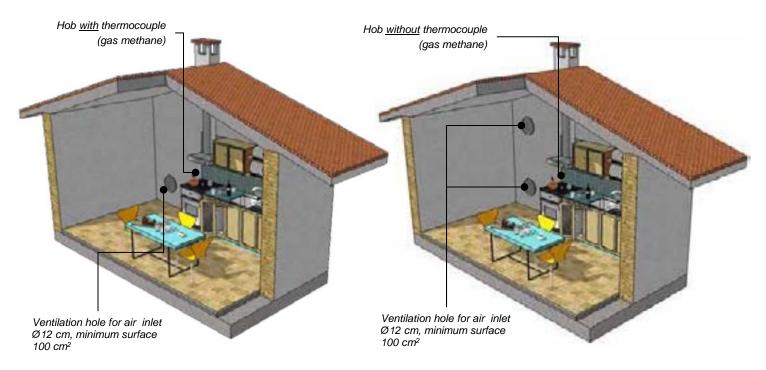
Façade wall acoustic insulation not only involves the wall itself but any element of the façade such as doors, windows, balconies etc.

All these wall elements contribute to the façade insulation. Here we focus on the ventilation hole element which is often the acoustic weak point of a façade wall.

<u>Façade Wall:</u> generally the external wall does not need to be acoustically insulated since the mass and the thickness of the wall will automatically achieve the correct airborne insulation as per the relevant national building regulations.

Acoustic issues can occur in weak areas like windows or ventilation holes. Here we assume that the windows are of a high standard from an acoustic point of view.

<u>Silencer for Ventilation holes:</u> Ventilation holes in the kitchen should be treated with a proper acoustic sound silencer to maintain the levels of sound insulation as per the relevant national building regulations.



Ventilation hole

According to UNI 7129 kitchen rooms need ventilation holes in the facades, to grant a correct combustion of gas. Holes should have the following requirements:

- net air flow section at least 6 cm² for 1 kW of installed thermal capacity, with a minimum section of 100 cm²;

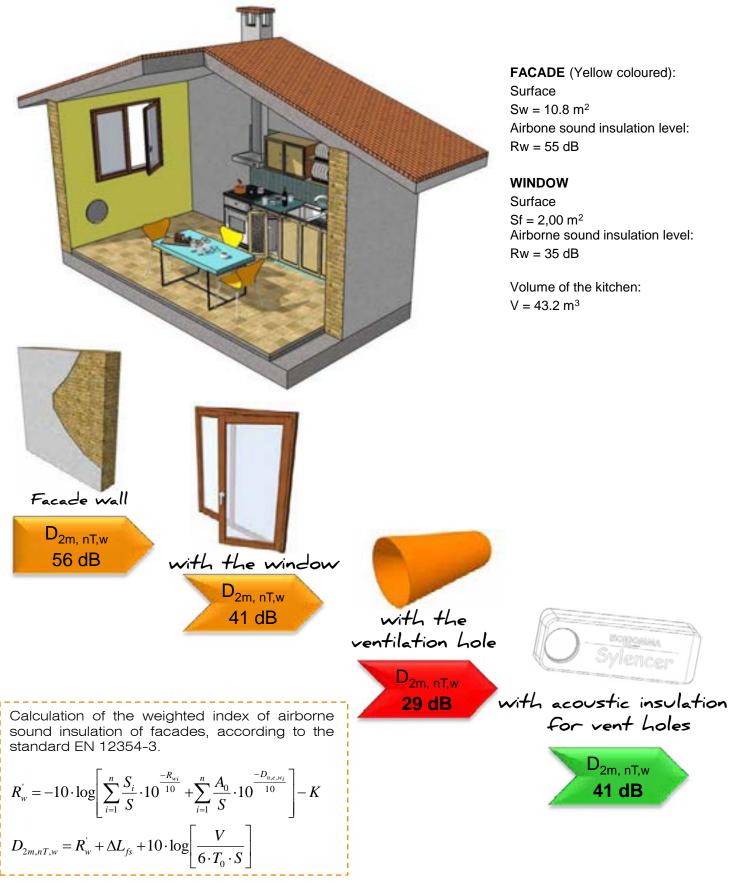
- if the hob is without thermocouple, (a device that prevents the release of gas, when the flame is extinguished accidentally), it is necessary to install a further hole, to reach a minimum ventilation section of 200 cm².

This solution, very important for safety, can bring problems in the airborne sound insulation of the facade. The ventilation hole in the external partition brings a noise leakage wich affects the global insulation of the facade.

To keep the sound insulation of the facade between regulation parameters, silencers should be used on the ventilation holes.

The silencer has two functions:

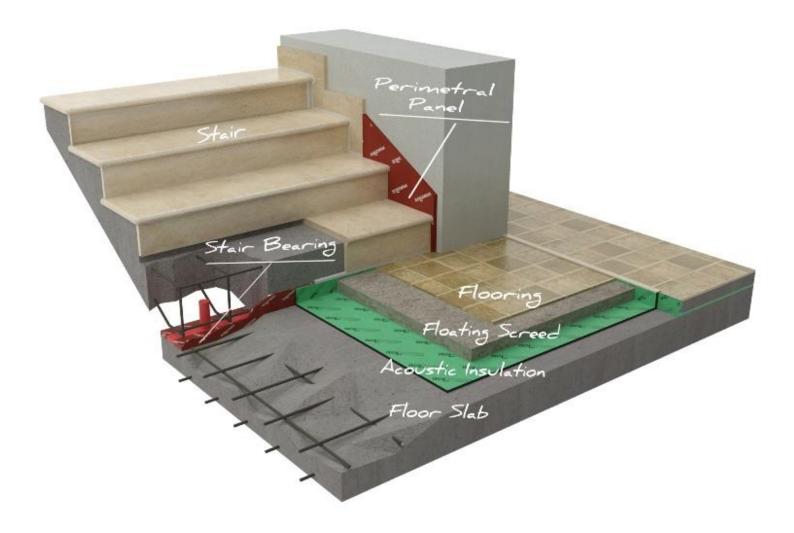
- it grants a linear air flow with a free surface of 100 cm²
- it avoids the facades' insulation losses due to the ventilation holes



Ventilation hole

The following is an acoustic insulation calculation showing the influence of the ventilation hole Sylencer in a facade wall.

STRUCTURAL INSULATION



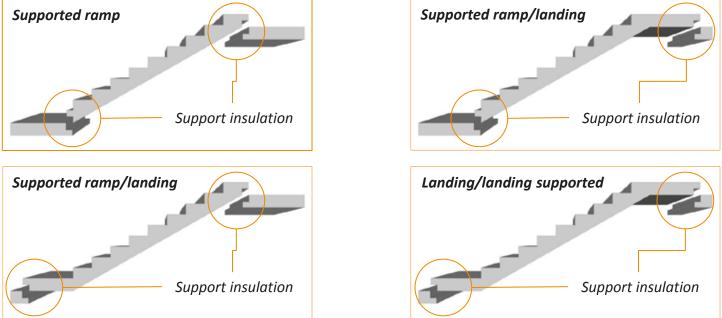
Structural insulation

Stairs

In buildings it is possible to improve their acoustic insulation by installing elastomeric joints and structural bearings. This avoids the propagation of sound and vibration along the structural frame of the building.

The most common structural bearing application is under the foundations or structural walls and along the stair joints.

<u>Stabe Stair Bearing</u>: At the bottom and top footing point of the stairs an elastic bearing must be installed to prevent footfall vibrations on the stairs propagating to the neighbouring rooms and houses.



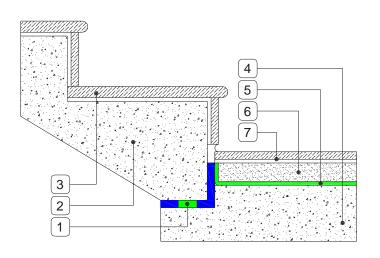
Impact sound or noise is propagated by the structural building frame. In the case of stairs is not possible to achieve an efficient floating step system therefore the insulation is applied at the stair fixings.

More precisely the stair is physically disconnected from the bottom and top footing area, with the STABE bearing, ensuring that the noise and vibration from impact sound on the stairs is not transmitted and propagated into the whole building structure.

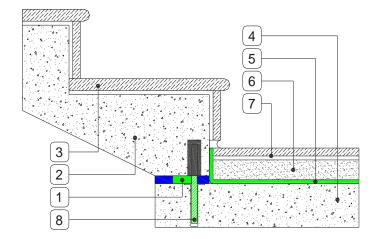
See below for various stair bearing applications:

The STABE stair bearing can be used for precast stair units as well as in-situ construction. In the latter case the stair bottom and top footing have to be constructed first and then the stair itself can be built over the STABE bearings.

Application detail


STABE Z

- 1. Acoustic & Vibration Insukation made of preassembled strips on which a rubber inner part of 10mm or 20 mm is located.
- 2. Concrete Stairs
- 3. Stair finishing of 3 cm thickness
- 4. Concrete slab of the building of 15 cm thickness
- 5. Acostic layer installed under a floating screed
- 6. Floating screed or equivalent layer of 5 cm thickness.
- 7. Ceramic floor finishing of maximum 2 cm


Structural insulation

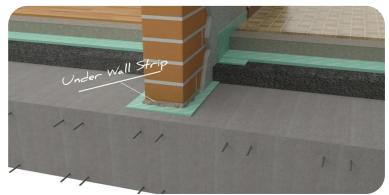
Stabe L

- 1. Acoustic & Vibration Insukation made of preassembled strips on which a rubber inner part of 10mm or 20 mm is located
- 2. Concrete Stairs
- 3. Stair finishing of 3 cm thickness
- 4. Concrete slab of the building of 15 cm thickness
- 5. Acostic layer installed under a floating screed
- 6. Floating screed or equivalent layer of 5 cm thickness.
- 7. Ceramic floor finishing of maximum 2 cm

Stabe I

- 1. Acoustic & Vibration Insukation made of preassembled strips on which a rubber inner part of 10mm or 20 mm is located
- 2. Concrete Stairs
- 3. Stair finishing of 3 cm thickness
- 4. Concrete slab of the building of 15 cm thickness
- 5. Acostic layer installed under a floating screed
- 6. Floating screed or equivalent layer of 5 cm thickness.
- 7. Ceramic floor finishing of maximum 2 cm
- 8. Stabe Pin

Stabe Type	Stair Weight (Kg)	Vibration Insulation (%)	Vibration Insulation (dB)
	1000 ÷ 1500	91	-23,5
	1500 ÷ 2000	91	-23,5
	2000 ÷ 2500	91	-23,5
STABE 10 LOW	2500 ÷ 3000	91	-23,5
Z – L – I	3000 ÷ 3500	91	-23,5
	3500 ÷ 4000	91	-23,9
	4000 ÷ 4500	91	-23,9
	4500 ÷ 5000	92	-24,3
STABE 20 LOW	1000 ÷ 1500	94,6	-28,5
	1500 ÷ 2000	94,6	-28,5
Z – L – I	2000 ÷ 2500	94,6	-28,5
	2500 ÷ 3000	94,6	-28,5
STABE HIGH Sp. 20	3000 ÷ 3500	94,9	-29,0
•	3500 ÷ 4000	95,1	-29,5
Z – L – I	4000 ÷ 4500	95,4	-30,0
	4500 ÷ 5000	95,6	-30,5


Insulation values calculated by means of transmissibility formulas for vibrations, with reference source Frequency of 100 Hz.

Structural insulation

Underwall

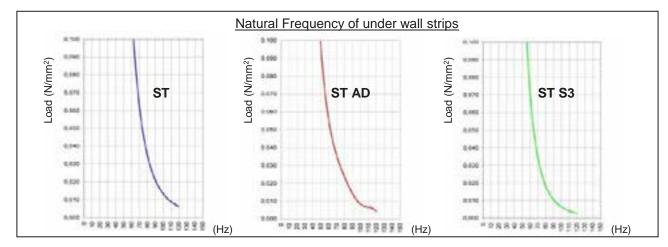
Impact noise as well as airborne noise propagate themselves through the structures of the building in the form of vibration and after will re-irradiate noise in the rooms near the noise source. An efficient solution to block this transmission of vibration noise is to separate any structural wall with anti-vibration elements. This is the case with partition walls and any separating wall which can be disconnected from the base with a Stywall strip underneath the wall. The Stywall strip stops impact sound and airborne sound transmission to the floor slab, improving the airborne noise insulation of the walls and the impact noise insulation with the under stair floor.

Depending on the wall load, the natural frequency of the wall/strip system can be evaluated and the insulation of the disturbing frequencies can be calculated. The following are examples of wall load ranges:

HEAVY WALLS: are made of concrete, concrete blocks or high density blocks

Wall weight: Load on the strip: 400 – 600 kg/m² 0,04 – 0,06 N/mm²

HEAVY BLOCK WALLS: are made of heavy hollow blocks or similar type block



Wall weight: Load on the strip: 200 – 400 kg/m² 0,02 – 0,04 N/mm²

LIGHT WALLS: are made of light hollow blocks

Wall weight: : Load on the strip: 100 – 200 kg/m² 0,01 – 0,02 N/mm²

SYSTEMS INSULATION

Systems insulation

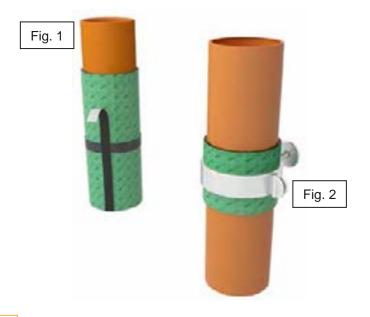
Pipes

The main problem of the piping in dwellings is the outflow pipe of the waste water, which connects bathrooms at different floors; the outflow creates different types of noise, that have to be treated separately.

Noise from the water fall

It is the noise caused by the water falling down inside the pipes.

Noise of the water impact


It is caused by the direct impact of the falling water on the pipes' junctions, in curves. The water hits the pipe and the water outflow slower.

Noise from outflow

It is caused by the horizontal water outflow inside the pipes. Generally it is silenced, but can be disturbing when the pipe changes directions.

To improve the pipes insulation it is necessary to <u>cover the pipeing</u> with an elastic high density product, such as **Stywall S3-A** (fig. 1); <u>the</u> <u>improvement is at least 10 dB</u>. In the case of piping fixed with metal fastenings, insert the **Stywall S3-A** to reduce the structure borne sound(fig. 2)

PIPES INSULATION

VIBRATION INSULATION

Vibration insulation

Foundation

Vibration and noise that involve a building can arise from inside, butalso from external environment; in particular the proximity to roads, railways and metros can create vibration, that through the ground are transmitted to the building structures. To reduce and prevent this disturb, the foundation of the building can be insulated with an anti-vibration system.

<u>Under foundation</u>: in general before making the foundation of a building, the dig is realized and a first layer of lean concrete substrate is placed, as a planar base for future execution of the foundation. In this case the antivibration product is placed on the substrate.

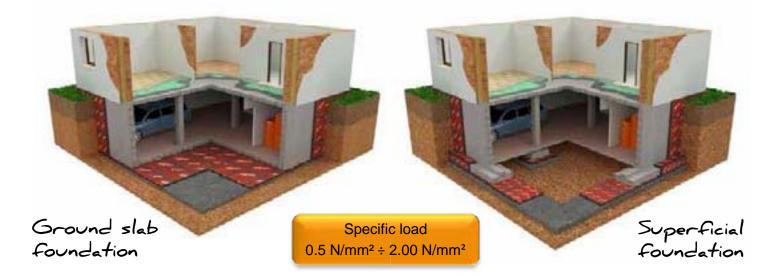
<u>Antivibration mat:</u> the aim of the antivibration mat is to decouple the building from the ground; it is positioned at the base and adges of the foundation.

Foundation: the ground slab foundation can be cast over the antivibration layer with the normal site procedures.

Foundation

The insulating system consists in the insertion of the antivibration mat under the foundation of the building. The product decouples the building from the ground and avoids the transmission of the vibration coming from external infrastructures (roads, railways, metros...)

The type of insulation has to be designed depending on the load; in fact the system can be applied to all types of foundation:


- Punctual foundation: structural columns
- Superficial foundation: foundation beam
- Ground foundation

Deeper foundations are excluded from this application (pile foundation) because for structural reasons have to be connected to the structure.

Small and medium size buildings

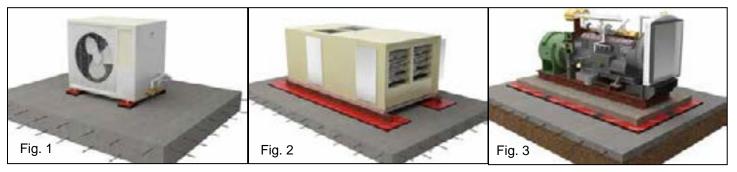
Big size buildings

Isolgomma have developed the MEGAMAT Line for these applications and industrial applications; for more information refer to technical and commercial documentation of this Line.

ISOIGOMMA

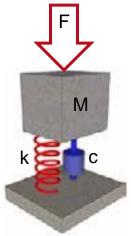
Vibration insulation

Vibrating machines


In the construction industry it is very common to centralise the thermal regulation of buildings with large HVAC machinery and also emergency power generators. These machines produce a high quantity of airborne noise and an enormous flow of vibrations.

This is why they are generally located on dedicated "Technological" floors that have a very thick floating slab system. In other cases they are located on the roofs of buildings fixed over a floating concrete slab. The following examples are the most common types of applications using the Megamat range of anti-vibration products.

Light Machines (fig. 1): the feet of the machine are placed on Megamat Anti-Vibration Pads.


Machines on Steel Beams (fig. 2): the machine beams are placed over two Megamat Anti-Vibration Strips.

Heavy Machines (fig.3): in this case the HVAC unit is placed directly on a floating concrete slab over a *Megamat Anti-Vibration Mat.*

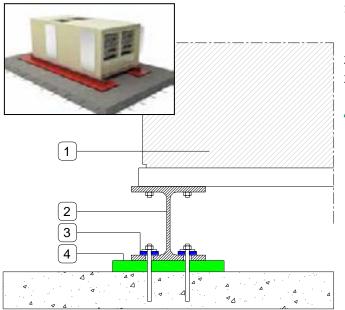
PARAMETER

Vibration:	it defines the motion of a body oscillating around an equilibrium position, resulting in a force which varies in time
Frequency:	it is the times that the motion of the system shows the same characteristics in a target range, represents the number of cycles completed in time
Natural Frequency (f_0):	it is the frequency at which the syste vibrates in the absence of external forces
Work frequency (f):	it depends on the external force F (t), if any, acting on the system with variability dependent on time

MASS-SPRING SYSTEM

We consider a force vibration F, applied to the mass M, of harmonic sinusoidal type. Through the spring system, with stiffness k and damping c, is transmitted to the support structure a force with the same frequency f (same period tp) but different amplitude (Ft). The effect of damping system can be expressed through the transmission factor:

T = Ft / Fp


The spring system is efficient when T $<\!1,$ when the force transmitted is less than the disturbing force

Isolgomma developed the MEGAMAT Line to specifically solve any vibration problems on HVAC units, Generators or any other machine with vibration problems. For detailed information on this line and field please refer to the specific Megamat literature.

Vibration insulation

Vibrating machines

- Vibrating machine: it can be an HVAC, a refrigerating unit, a chiller or other types of machines used for the air conditioning in buildings
- 2. Steel beam (IPE o HE) to support the machine
- 3. OPTION: fastening of the machine to the ground with anchor bolts insulated with rubber plates
- 4. Antivibration in panels with thickness 20/30/40/50 mm made of selected fibers and granules of SBR (Styrene Butadiene Rubber) and granules of EPDM rubber (Ethylene Propylene Diene Monomer), fixed to a non-woven tearresistant backing and hot pressed with polyurethane binder; density kg/m³. The panels' dimensions are length 1 m, width 1 m.

machine weight: 5000 kg bearing dimensions: 2 beams 2 m long and 20 cm large disturbing frequency: 50 Hz

Product	Percent insulation efficiency	Attenuation value (dB)	Technical data
Megamat ME20/500	80%	14.3	Pag.158
Megamat ME40/500	91%	20.5	Pag.158
Megamat ME80/500	96%	27.3	Pag.158

- Vibrating machine: it can be a generator, an HVAC, a refrigerating unit, a chiller or other types of machines used for air conditioning in buildings
- 2. Fastening of the machine to the basement with anchor bolts
- 3. Concrete basement
- 4. Antivibration in panels with thickness 20/30/40/50 mm made of selected fibers and granules of SBR (Styrene Butadiene Rubber) and granules of EPDM rubber (Ethylene Propylene Diene Monomer), fixed to a non-woven tearresistant backing and hot pressed with polyurethane binder; density kg/m³. The panels' dimensions are length 1 m, width 1 m.

machine weight + basement weight: 2000 + 3000 kg loading surface: 5 m² disturbing frequency: 50 Hz

Product	Percent insulation efficiency	Attenuation value (dB)	Technical data
Megamat ME30/500	81%	14.5	Pag.158
Megamat ME50/500	91%	20.8	Pag.158
Megamat ME80/500	96%	27.4	Pag.158

Vibrating machines

As an example, the following calculation shows the influence of the vibration insulation :

Dimensions of the machine Length 3000 mm Width 1200 mm Height 1060 mm

Dimensions of bearings

Length 200 mm Width 200 mm Number of bearings: 4

Weight of machine: 1000 kg

Working frequency (f): 50 Hz

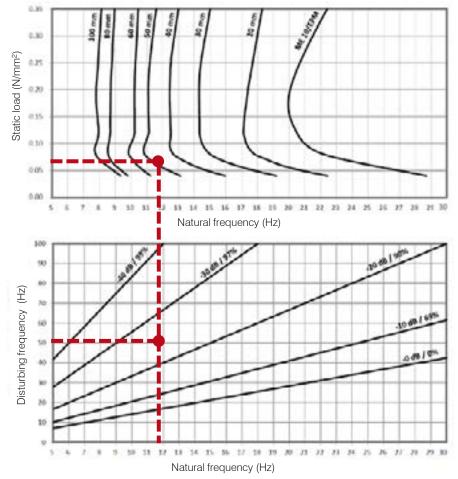
Calculation of the antivibration solution:

Pressure on the antivibration bearings (n. 4 bearings 200 mm x 200 mm): 0.0613 N/mm²

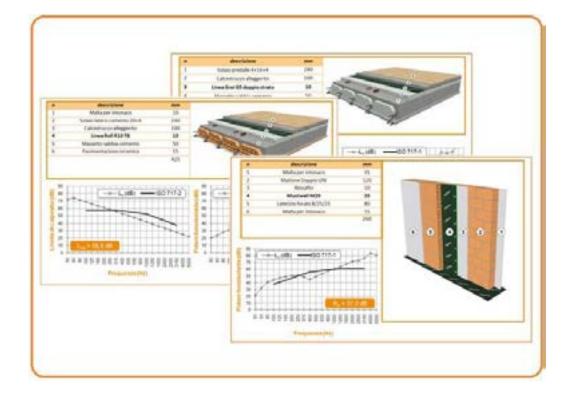
Choice of the product:

Isolgomma Megamat ME 50/500 f₀ (0.0613 N/mm²) = 11.8 Hz

Calculation of the transmissibility


$$T = \sqrt{\frac{1 + \left(2\xi \cdot \frac{f}{f_0}\right)^2}{\left[1 - \left(\frac{f}{f_0}\right)^2\right]^2 + \left(2\xi \cdot \frac{f}{f_0}\right)^2}} < 0.0913$$

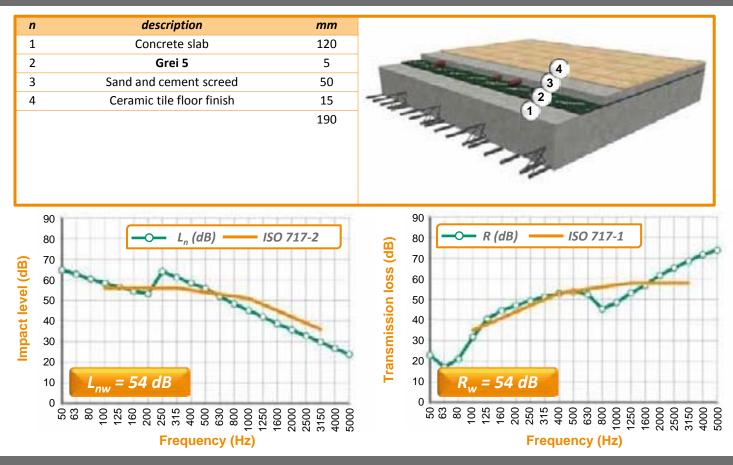
Percent insulation efficiency (%):

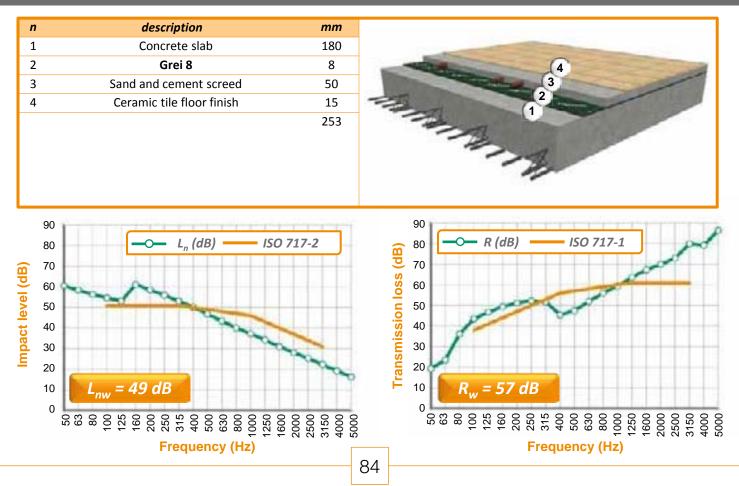

 $A_{\%} = 100 \cdot (1 - T) = 90\%$

Attenuation value(dB)

$$A_{dB} = 20 \cdot \log(T) = -22.8 dB$$

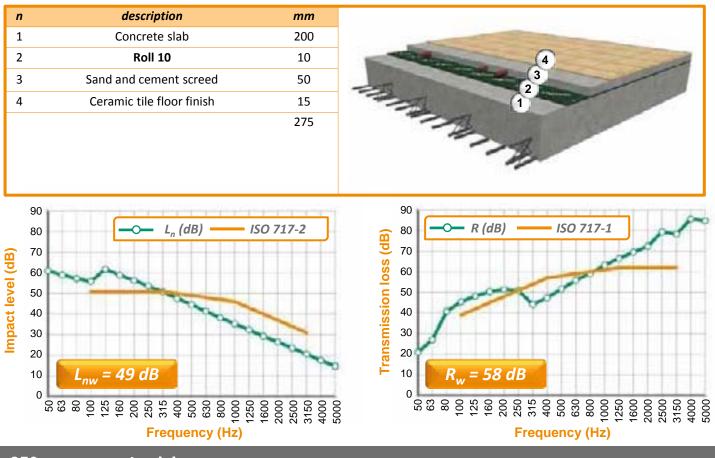
ACOUSTIC CALCULATIONS

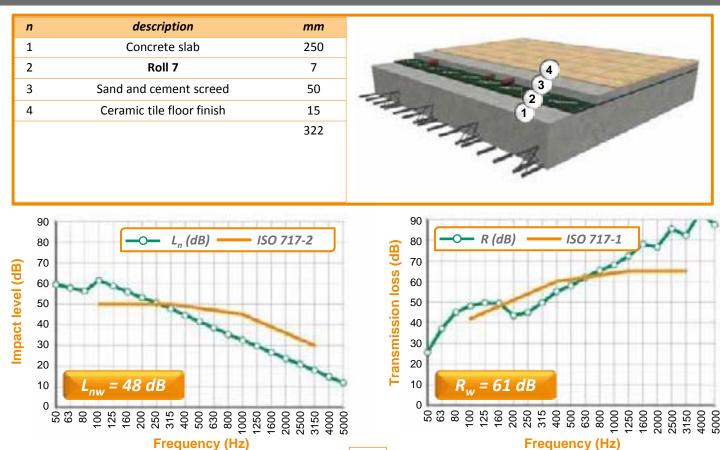




Floating screed

120 mm concrete slab

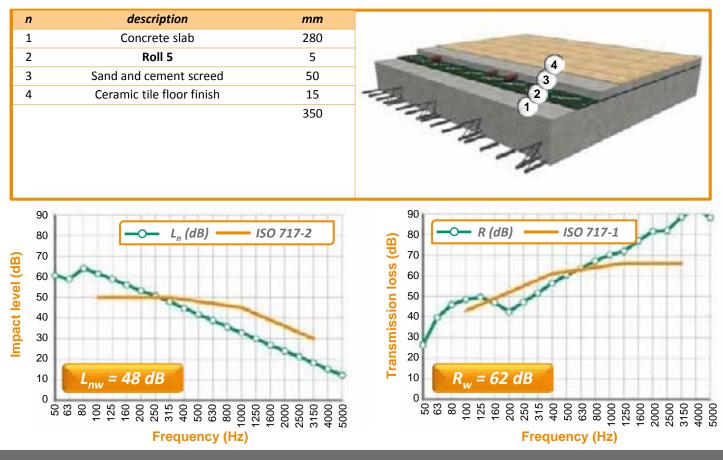


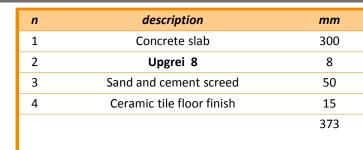

Floating Screed

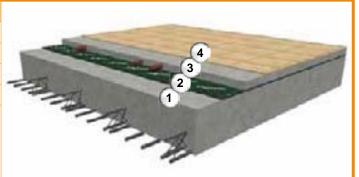
ISOIGOMMA

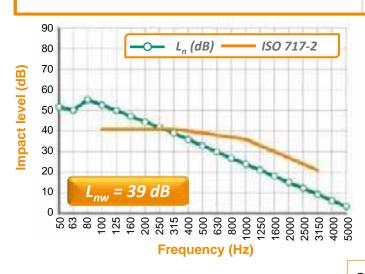
200 mm concrete slab

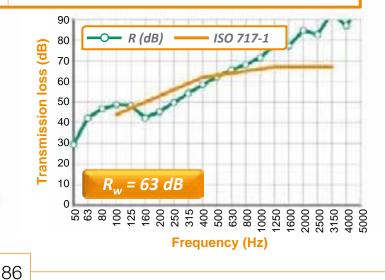
250 mm concrete slab

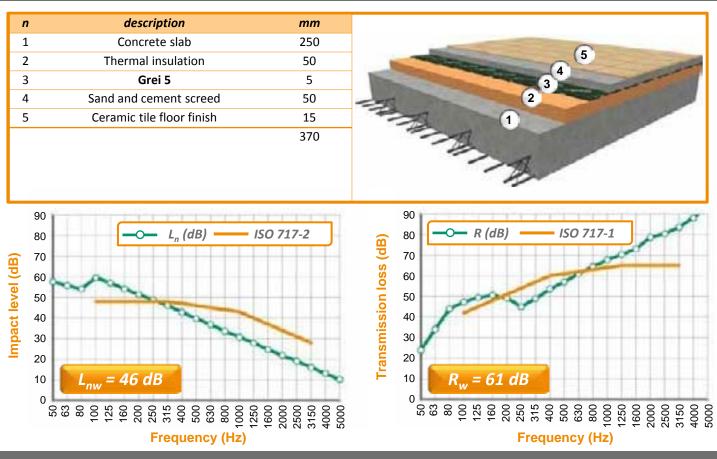


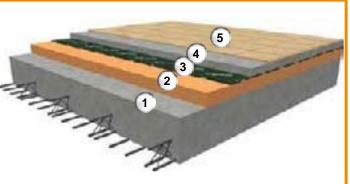

85



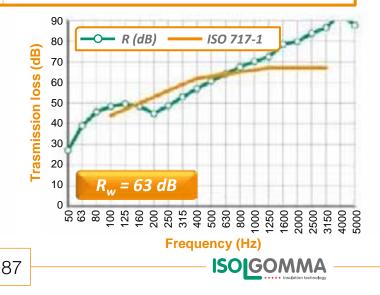

Floating screed


280 mm concrete slab

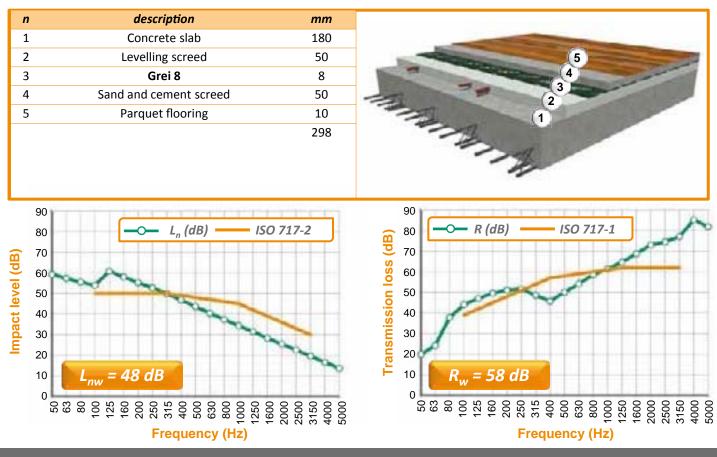



Floating Screed

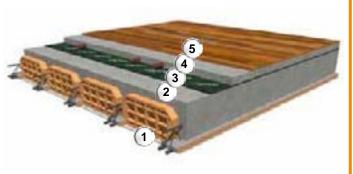
250 mm concrete slab with thermal insulation

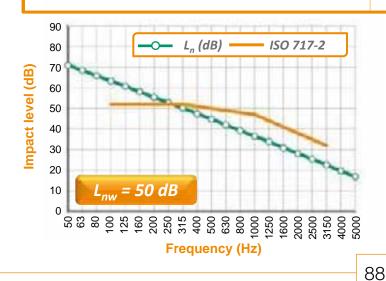


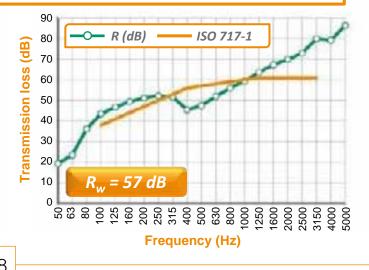
300 mm concrete slab with thermal insulation



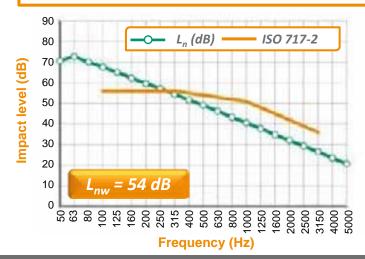
ISOLGOMMA total insulation technology

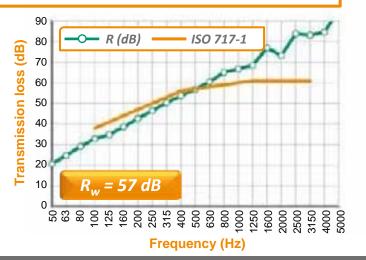

Floating screed


180 mm concrete slab with levelling screed



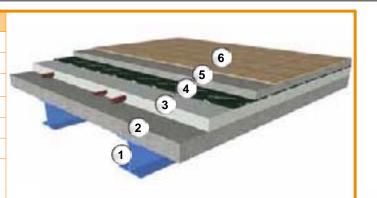
320 mm Hollow brick slab

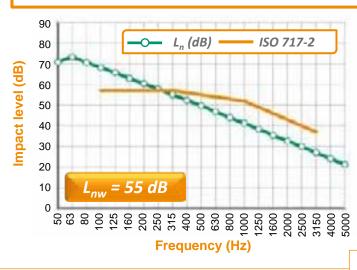


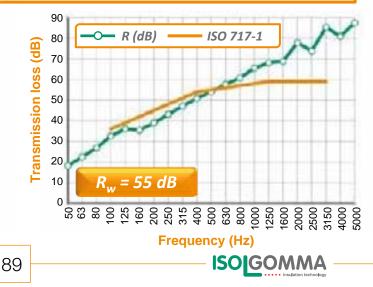


Floating Screed

Beam and block floor

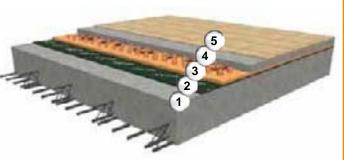

n	description	mm
1	Gypsum board	12.5
2	Air cavity	50
3	Beam and block floor	150
4	Sand and cement screed	50
5	Grei 5	5
6	Sand and cement screed	50
7	Ceramic tiles floor finish	15
		332.5

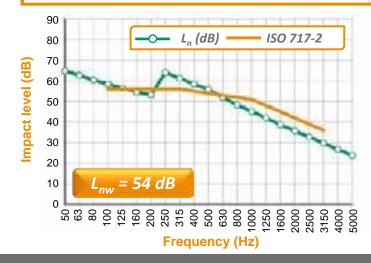


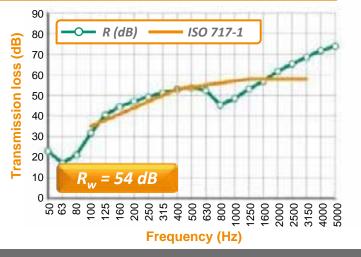


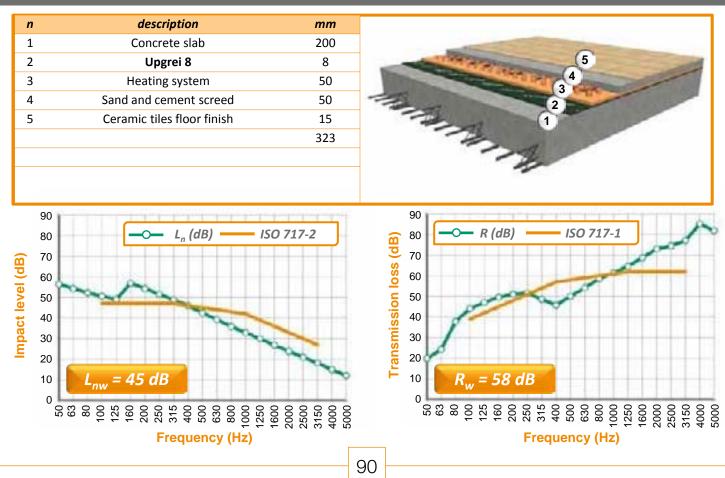
Steel beam and concrete slab

n	description	mm
1	Steel beam	210
2	Concrete slab	100
3	Levelling screed	100
4	Grei 8	8
5	Floating screed	50
6	Ceramic tile floor finish	15
		483

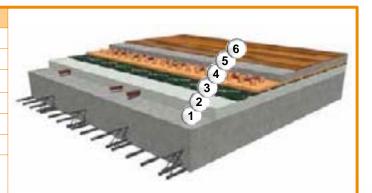


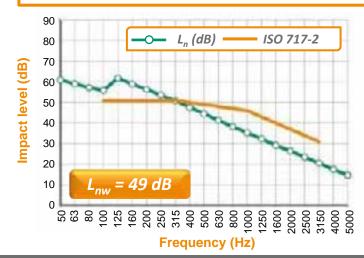


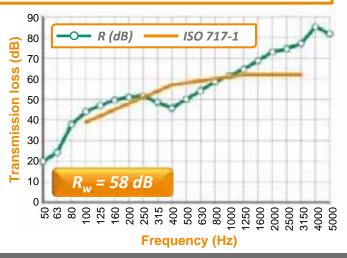

Underfloor heating


120 mm concrete slab

n	description	mm
1	Concrete slab	120
2	Roll 10	10
3	Heating system	50
4	Sand and cement screed	50
5	Ceramic tiles floor finish	15
		245

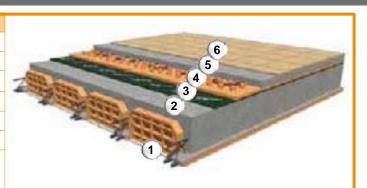


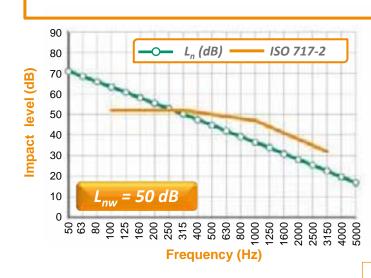


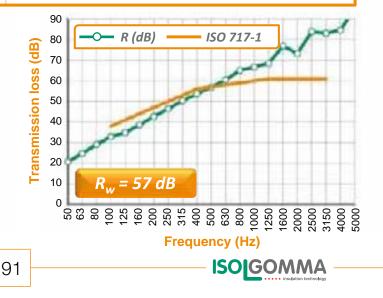

Underfloor heating

180 mm concrete slab with levelling screed

n	description	mm
1	Concrete slab	180
2	Levelling screed	50
3	Grei 5	5
4	Heating system	50
5	Sand and cement screed	50
6	Parquet flooring	10
		345

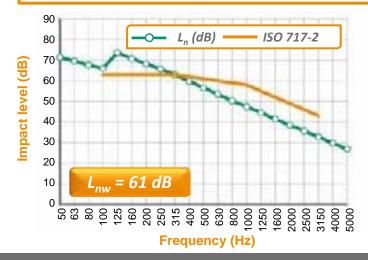


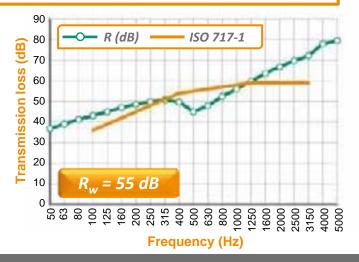




320 mm Hollow brick slab

n	description	mm
1	Plaster	10
2	Hollow brick slab	320
3	Grei 8	8
4	Heating system	50
5	Sand and cement screed	50
6	Ceramic tiles floor finish	15
		453

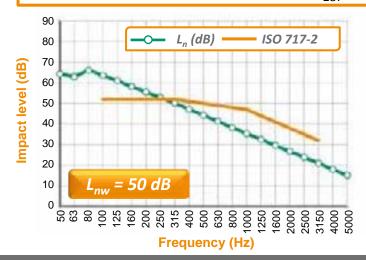


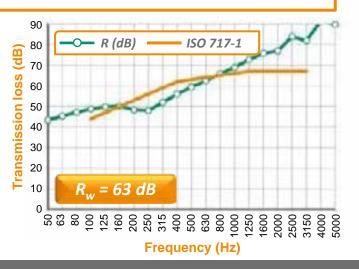

ISOLGOMMA total insulation technology

Wooden slab structure

Timber framed floor with under wooden floor and ceiling

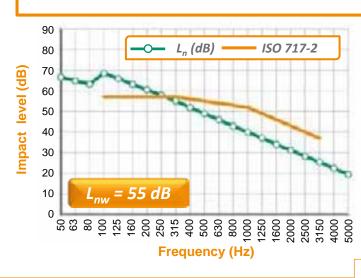
n	description	mm
1	Gypsum board double layer	25
2	Rock wool panel	100
3	Air cavity	125
4	Plywood flooring	18
5	OSB panel	20
6	Syl 5	5
7	Parquet flooring	8
		301

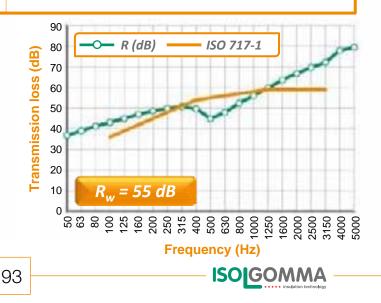



Timber framed floor with under wooden floor and ceiling

Wooden slab structure

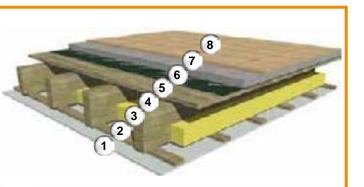
Timber framed floor with timber joinst and ceiling

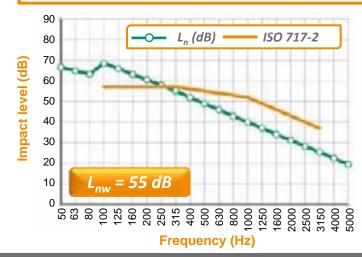

n	description	mm
1	Gypsum board	12.5
2	Mustwall 10	10
3	Gypsum board	12.5
4	Rock wool panel	100
5	Air cavity	65
6	OSB panel	22
7	Rock wool into wooden beam	30
8	OSB panel	22
9	Syl 5	5
10	Parquet flooring	8
		287

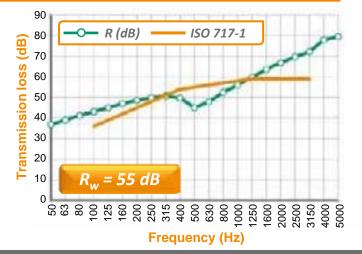


Timber framed floor with floating plywood and ceiling

n	description	mm
1	Gypsum board double layer	25
2	Rock wool panel	100
3	Air cavity	65
4	Wooden board	25
5	Roll 10	10
6	Wooden board	19
7	Parquet flooring	8
		252



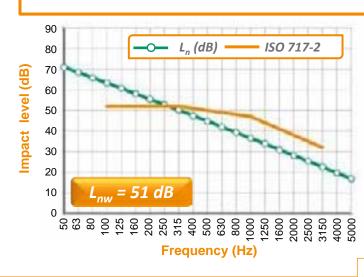

ISOLGOMMA total insulation technology

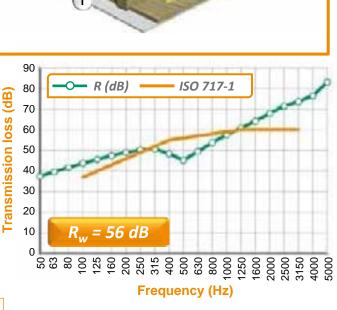

Wooden slab structure

Timber framed floor with floating screed and ceiling

n	description	mm
1	Gypsum board	12.5
2	Air cavity	24
3	Rock wool panel	100
4	Air cavity	120
5	OSB panel	22
6	Grei 5	5
7	Sand and cement screed	50
8	Ceramic floor finish	10
		344

(8

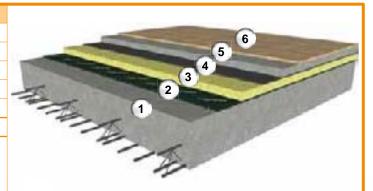

67

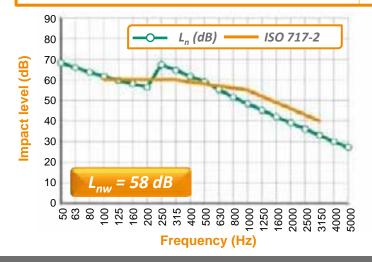

45

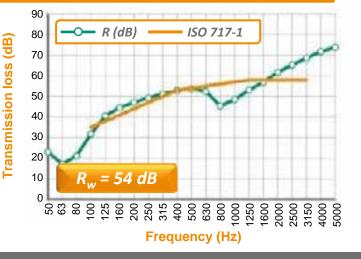
94

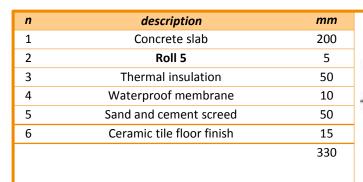
Timber framed floor with floating screed and ceiling

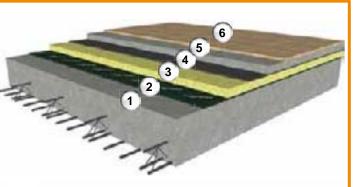
n	description	mm
1	Gypsum board	12.5
2	Wooden plank	50
3	Rock wool panel	100
4	Air cavity	120
5	Wooden plank	32
6	Grei 5	5
7	Sand and cement screed	50
8	Ceramic floor finish	10
		380

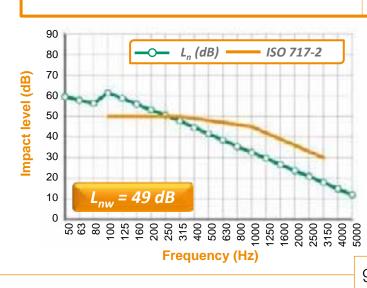


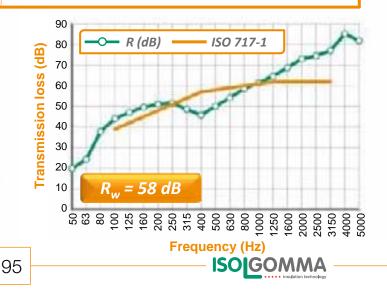


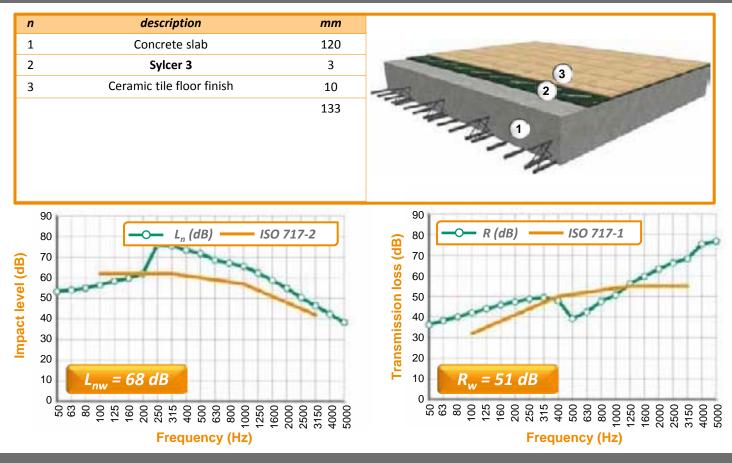

Terrace

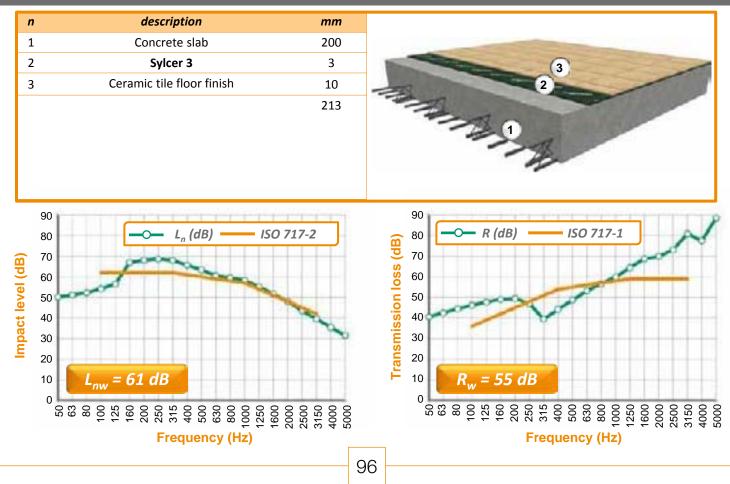

120 mm concrete slab


ndescriptionmm1Concrete slab1202Roll 553Thermal insulation504Waterproof membrane105Sand and cement screed506Ceramic tile floor finish15250			
2Roll 553Thermal insulation504Waterproof membrane105Sand and cement screed506Ceramic tile floor finish15	n	description	mm
3Thermal insulation504Waterproof membrane105Sand and cement screed506Ceramic tile floor finish15	1	Concrete slab	120
4Waterproof membrane105Sand and cement screed506Ceramic tile floor finish15	2	Roll 5	5
5Sand and cement screed506Ceramic tile floor finish15	3	Thermal insulation	50
6 Ceramic tile floor finish 15	4	Waterproof membrane	10
	5	Sand and cement screed	50
250	6	Ceramic tile floor finish	15
			250

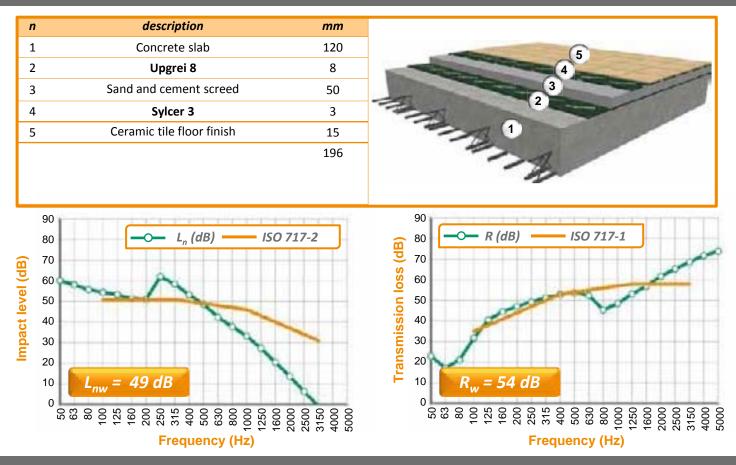




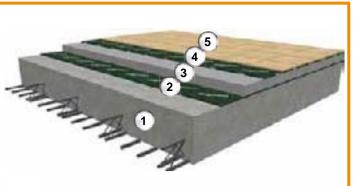




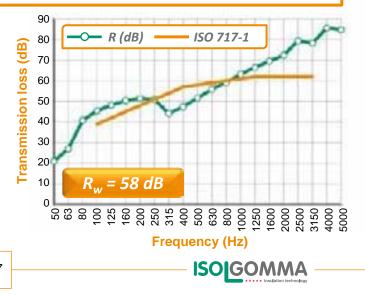
Under ceramic floor


120 mm concrete slab

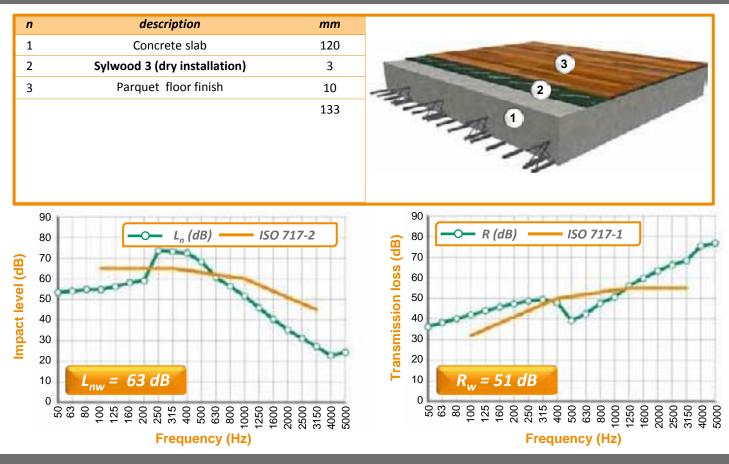


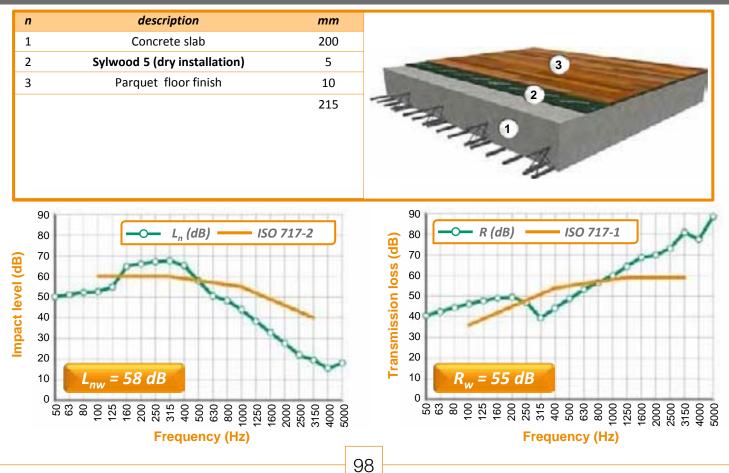

Under ceramic floor

120 mm concrete slab with floating screed



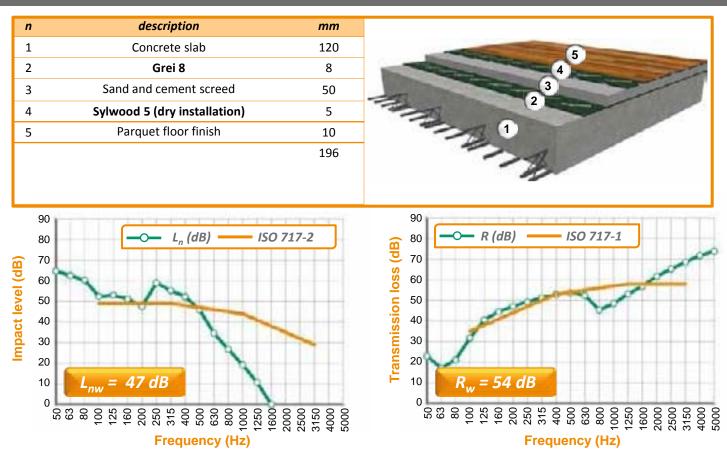
200 mm concrete slab with floating screed



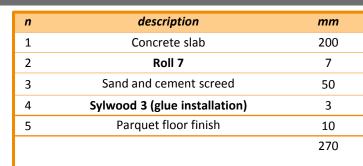


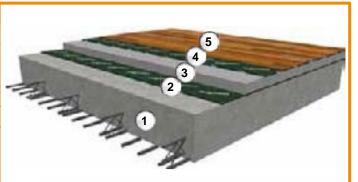
Under wooden floor

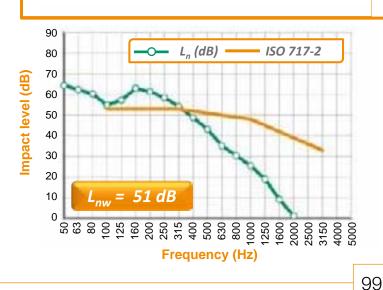
120 mm concrete slab with floating screed

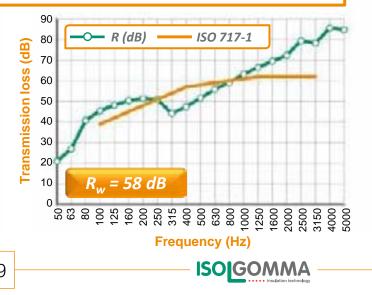


200 mm concrete slab with floating screed

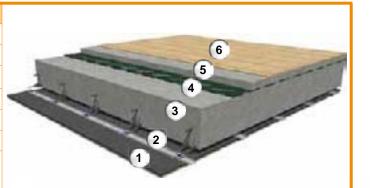



Under wooden floor

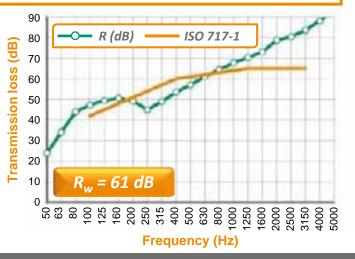

120 mm concrete slab with floating screed



200 mm concrete slab with floating screed

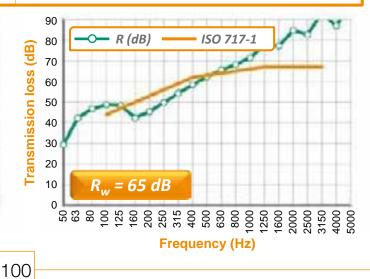




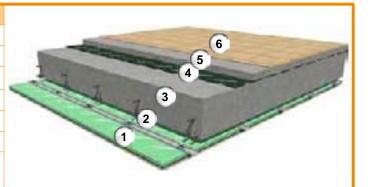


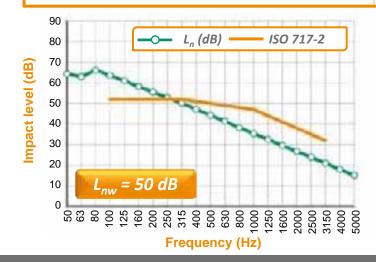
120 mm concrete slab

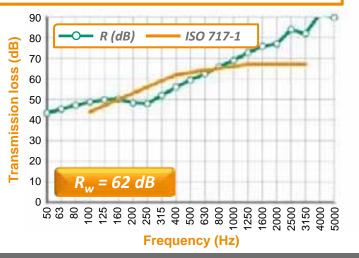
n	description	mm
1	Mustwall 33B	33
2	Air cavity	42
3	Concrete slab	120
4	Grei 5	5
5	Sand and cement screed	50
6	Ceramic tile floor finish	10
		260



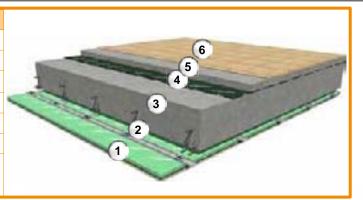
n	description	mm
1	Mustwall 33B	33
2	Air cavity	42
3	Concrete slab	200
4	Upgrei 8	8
5	Sand and cement screed	50
6	Ceramic tile floor finish	10
		343

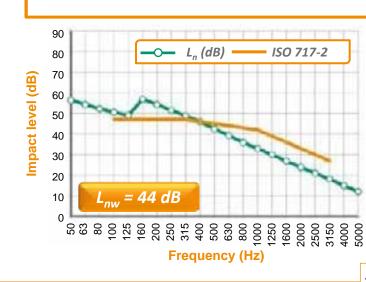


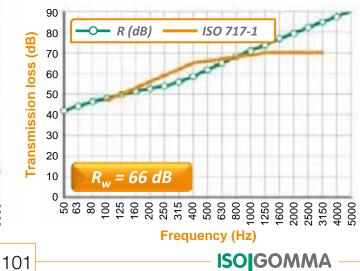




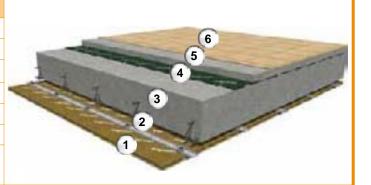
120 mm concrete slab

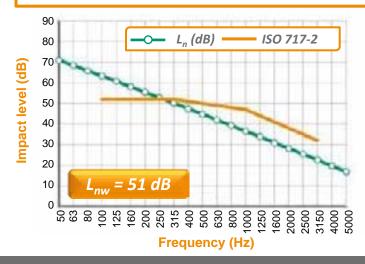

n	description	mm
1	Rewall 40	40
2	Air cavity	44
3	Concrete slab	120
4	Grei 5	5
5	Sand and cement screed	50
6	Ceramic tile floor finish	10
		269

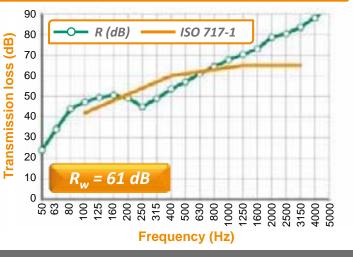




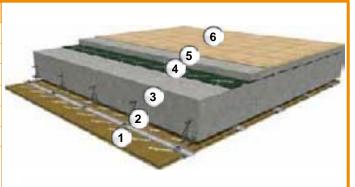
n	description	mm
1	Rewall 40	40
2	Air cavity	44
3	Concrete slab	200
4	Roll 7	7
5	Sand and cement screed	50
6	Ceramic tile floor finish	10
		351

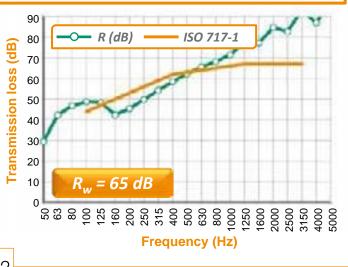


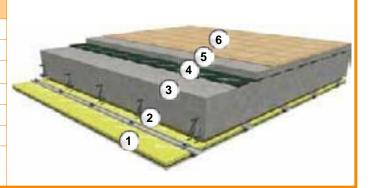


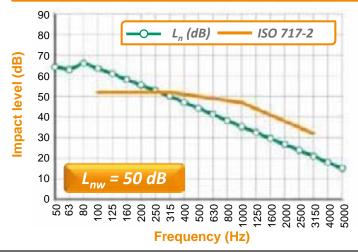


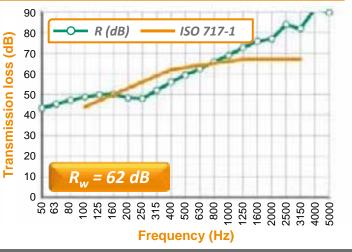
120 mm concrete slab


n	description	mm
1	Natur 33B	33
2	Air cavity	44
3	Concrete slab	120
4	Grei 5	5
5	Sand and cement screed	50
6	Ceramic tile floor finish	10
		262

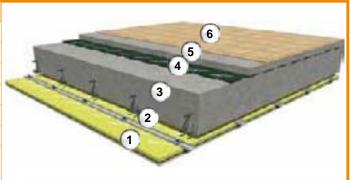


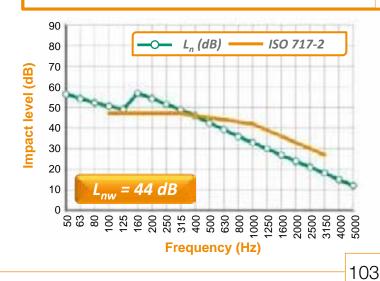


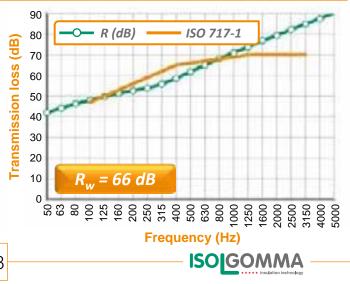


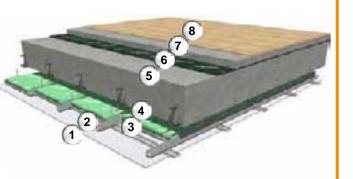


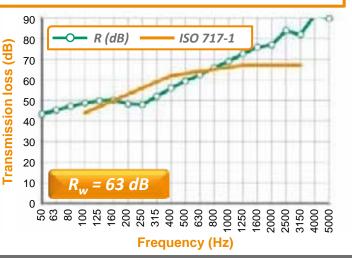

120 mm concrete slab


n	description	mm
1	Mineral 40RB	40
2	Air cavity	44
3	Concrete slab	120
4	Grei 5	5
5	Sand and cement screed	50
6	Ceramic tile floor finish	10
		269

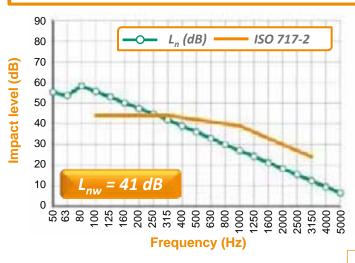


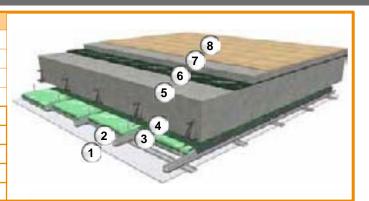


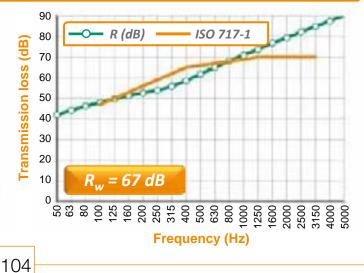



Suspended ceiling

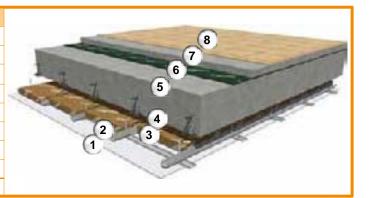
120 mm concrete slab

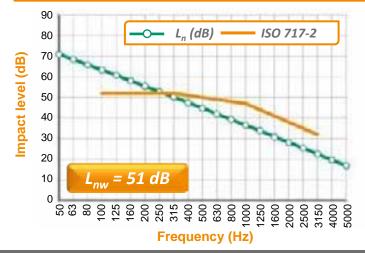

n	description	mm
1	Gypsum board layer	12.5
2	Air cavity (metal frame)	35
3	Trywall 48	48
4	Air cavity	105
5	Concrete slab	120
6	Grei 5	5
7	Sand and cement screed	50
8	Ceramic tile floor finish	10
		386

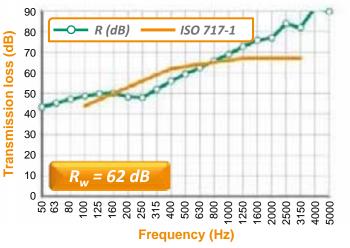




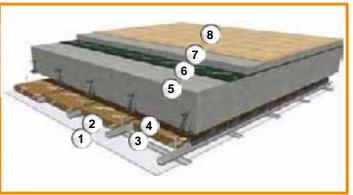
n	description	mm
1	Gypsum board layer	12.5
2	Air cavity (metal frame)	35
3	Trywall 48	48
4	Air cavity	105
5	Concrete slab	200
6	Grei 5	5
7	Sand and cement screed	50
8	Ceramic tile floor finish	10
		466

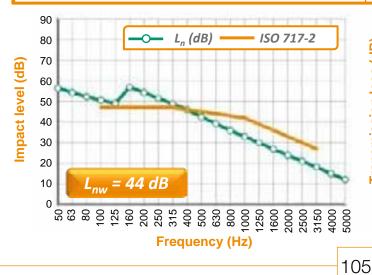





Suspended ceiling

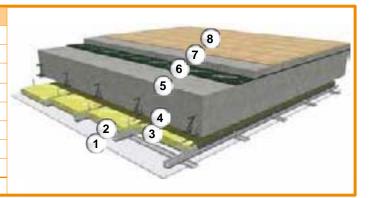
120 mm concrete slab

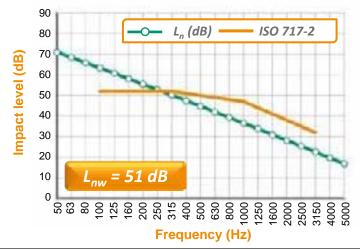

n	description	mm
1	Gypsum board layer	12.5
2	Air cavity (metal frame)	35
3	Natur 50	50
4	Air cavity	102.5
5	Concrete slab	120
6	Grei 5	5
7	Sand and cement screed	50
8	Ceramic tile floor finish	10
		385

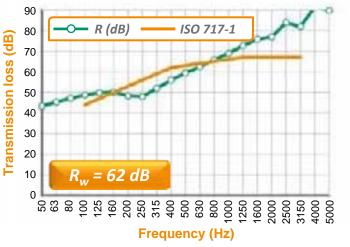




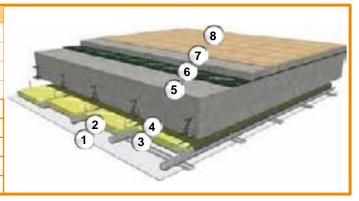
n	description	mm
1	Gypsum board layer	12.5
2	Air cavity (metal frame)	35
3	Natur 50	50
4	Air cavity	102.5
5	Concrete slab	200
6	Roll 7	7
7	Sand and cement screed	50
8	Ceramic tile floor finish	10
		467

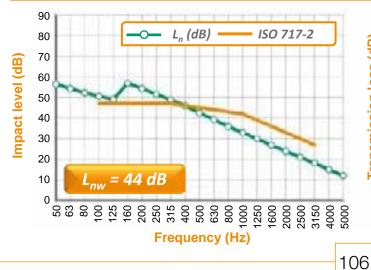


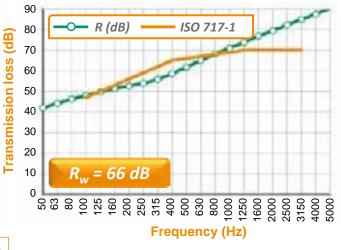



Suspended ceiling

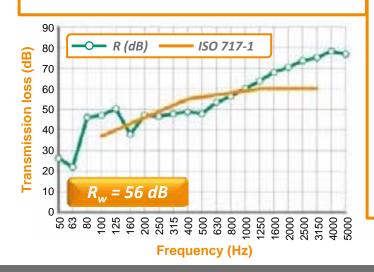
120 mm concrete slab

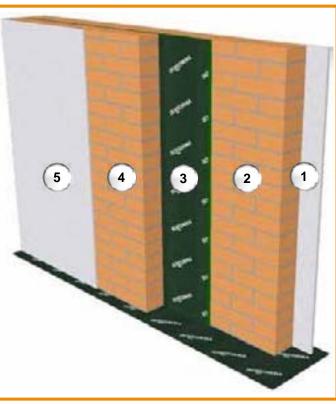

n	description	mm
1	Gypsum board layer	12.5
2	Air cavity (metal frame)	35
3	Mineral 50-70	50
4	Air cavity	102.5
5	Concrete slab	120
6	Grei 5	5
7	Sand and cement screed	50
8	Ceramic tile floor finish	10
		385



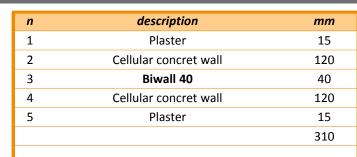


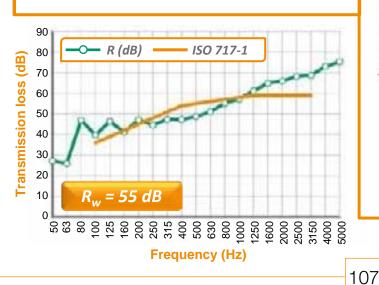
n	description	mm
1	Gypsum board layer	12.5
2	Air cavity (metal frame)	35
3	Mineral 50-70	50
4	Air cavity	102.5
5	Concrete slab	200
6	Roll 7	7
7	Sand and cement screed	50
8	Ceramic tile floor finish	10
		467

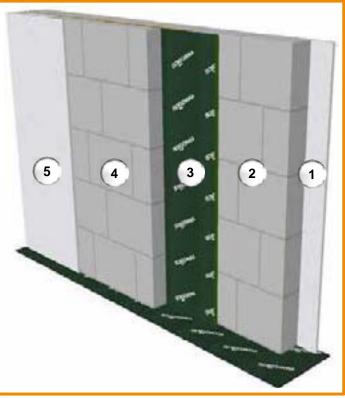




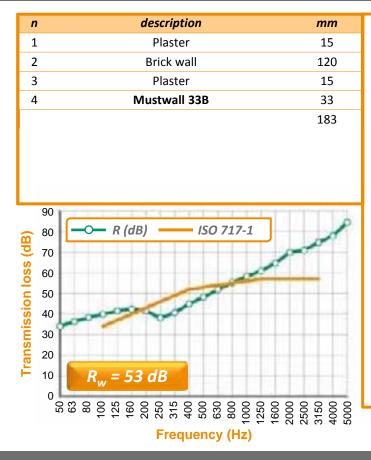
Double wall

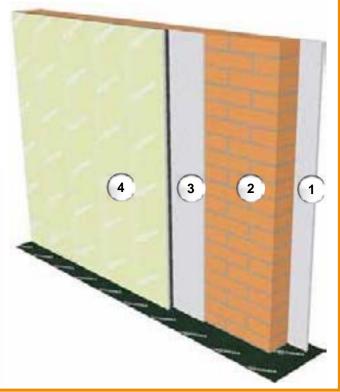

Double brick wall

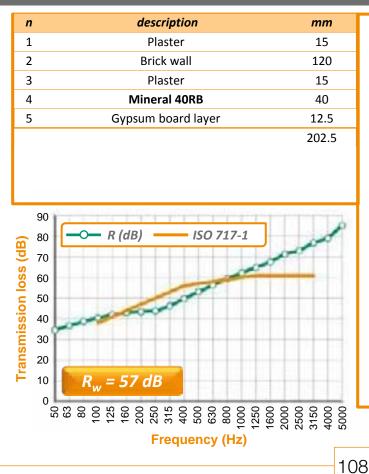

n	description	mm
1	Plaster	15
2	Brick wall	120
3	Biwall 40	40
4	Brick wall	120
5	Plaster	15
		310

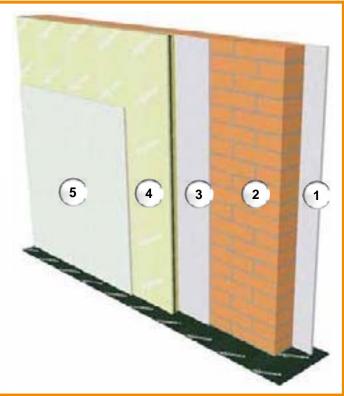


Double light concrete wall

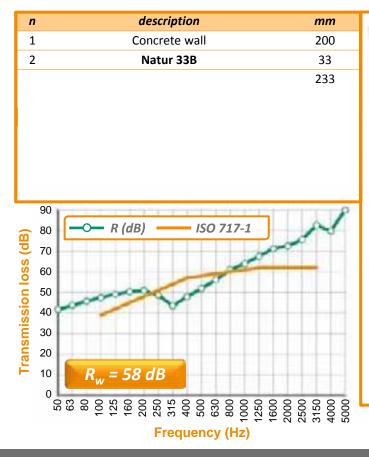


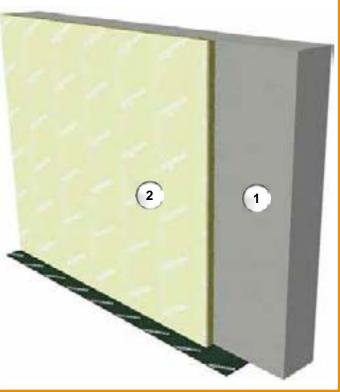

ISOGOMMA

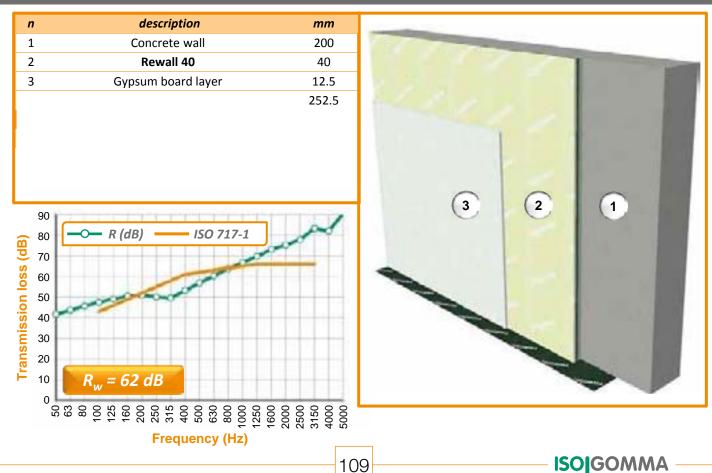

Coated wall


120 mm brick wall

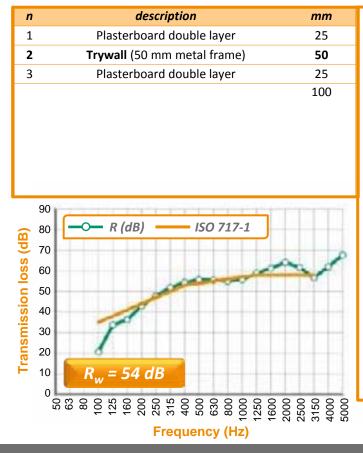
120 mm brick wall with plasterboard



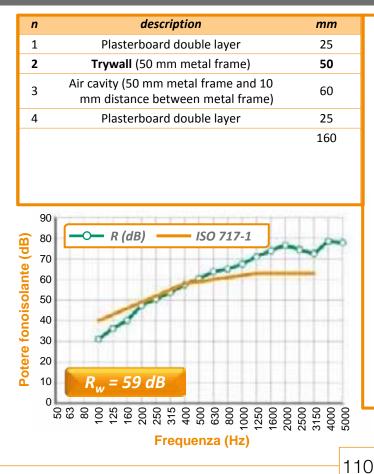



Coated wall

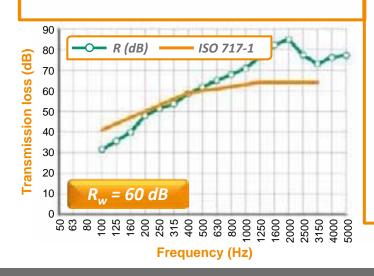
200 mm concrete wall

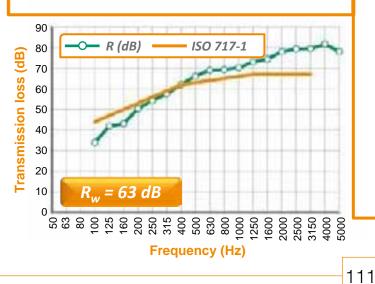


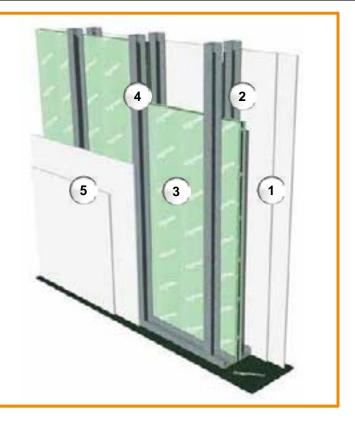
200 mm concrete wall with plasterboard

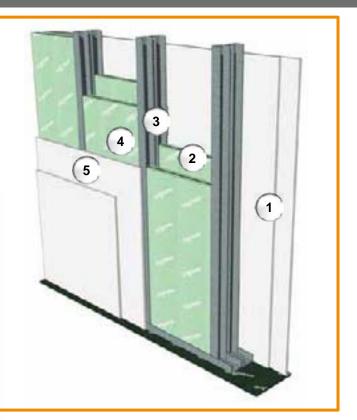


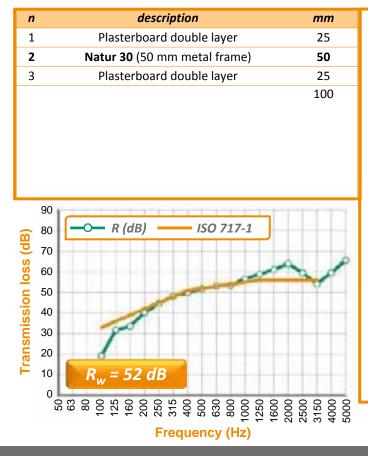
100 mm gypsum wall

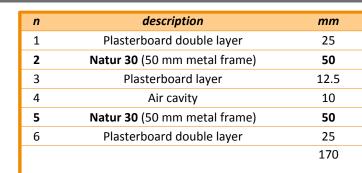


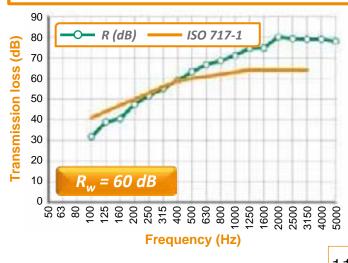



200 mm gypsum wall

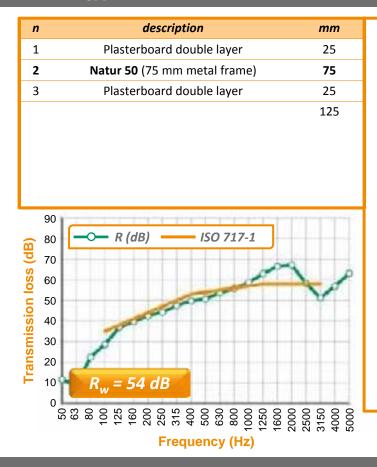

n	description	mm
1	Plasterboard double layer	25
2	Air cavity (50 mm metal frame)	50
3	Trywall	48
4	Air cavity (50 mm metal frame)	50
5	Plasterboard double layer	25
		198

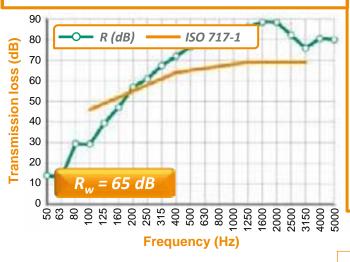


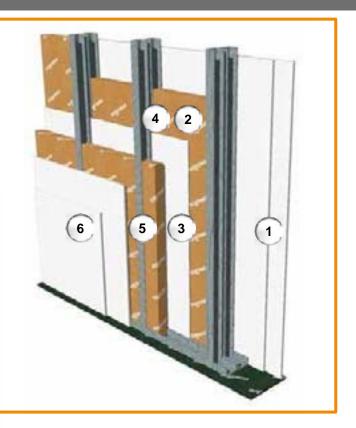

(1


2

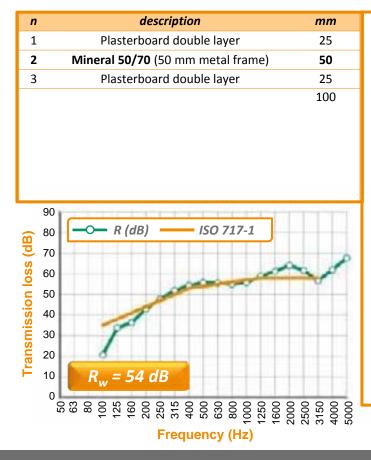
3

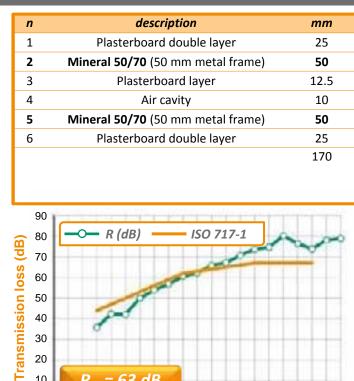


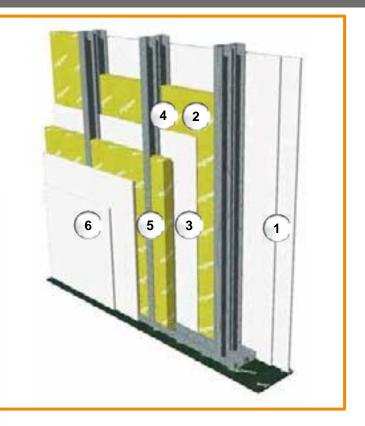


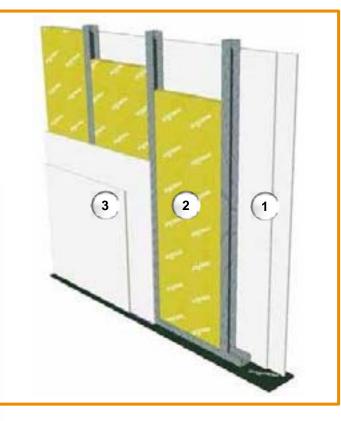

125 mm gypsum wall

n	description	mm
1	Plasterboard double layer	25
2	Natur 50 (75 mm metal frame)	75
3	Plasterboard layer	12.5
4	Air cavity	10
5	Natur 50 (75 mm metal frame)	75
6	Plasterboard double layer	25
		220

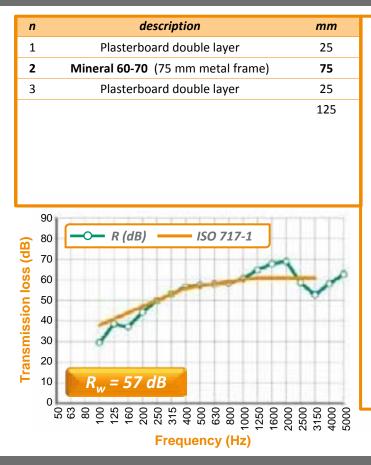



100 mm gypsum wall


170 mm gypsum wall


30 20

10 0 R,,, = 63 dB

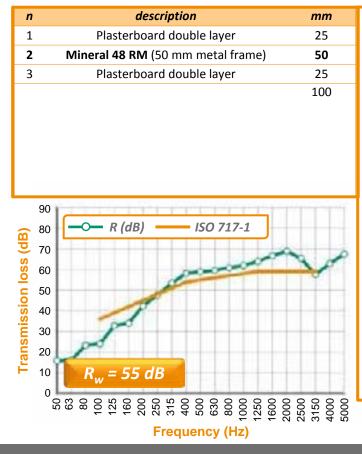


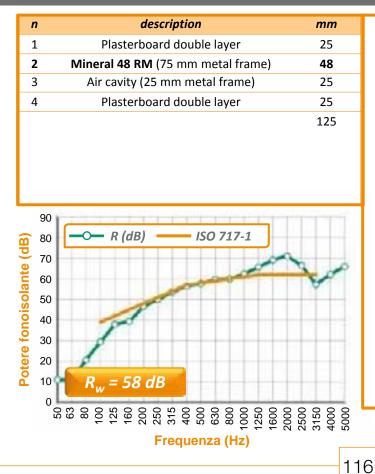
Frequency (Hz)

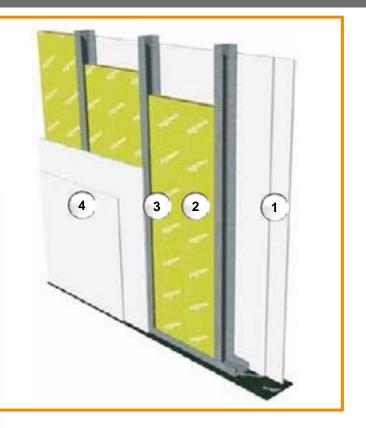
125 mm gypsum wall

220 mm gypsum wall

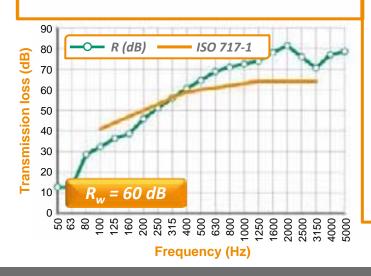
n	description	mm
1	Plasterboard double layer	25
2	Mineral 60-70 (75 mm metal frame)	75
3	Plasterboard layer	12.5
4	Air cavity	10
5	Mineral 60-70 (75 mm metal frame)	75
6	Plasterboard double layer	25
		220

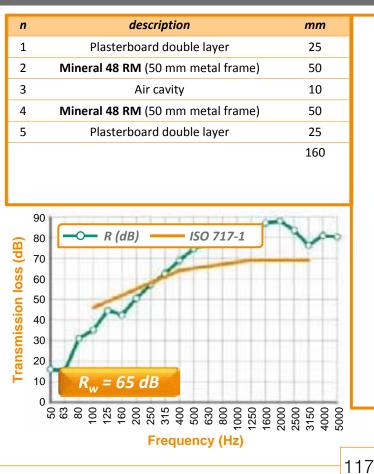



ISOGOMMA



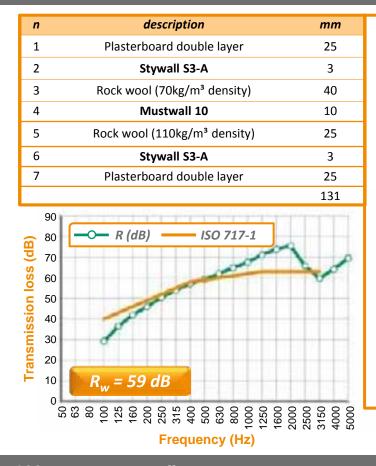
100 mm gypsum wall

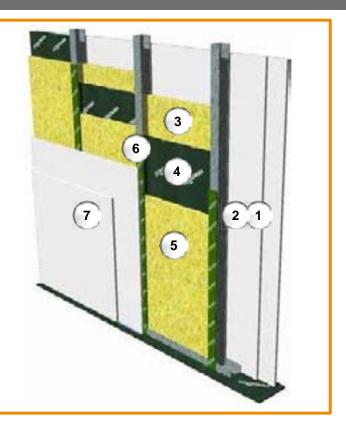


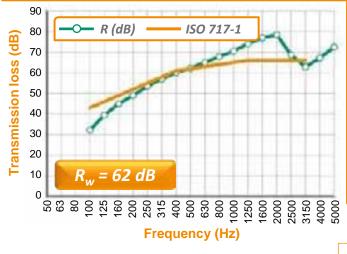


160 mm gypsum wall

n	description	mm
1	Plasterboard double layer	25
2	Mineral 48 RM (50 mm metal frame)	50
3	Air cavity	10
4	Air cavity (50 mm metal frame)	50
5	Plasterboard double layer	25
		160







125 mm gypsum wall

n	description	mm
1	Plasterboard layer	12.5
2	Syl 5	5
3	Plasterboard layer	12.5
4	Rock wool (70kg/m ³ density)	40
5	Mustwall 10	10
6	Rock wool (110kg/m ³ density)	50
7	Plasterboard layer	12.5
8	Syl 5	5
9	Plasterboard layer	12.5
		160

NIMOUTOC ISOLOOMMA SOLGOMMA AMMODION COMMA

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Sound insulation for floating floors

Product description and Technical Specification

.... mm acoustic insulation rolls, made of SBR (Stirene Butadiene Rubber) fibres and granules rubber, compacted using a latex binder in a hot process. A blue synthetic, 90 g/m² non woven anti-stretch backing is applied on one side. The dimensions of the roll are: 500 cm lenght, 104 cm width including 4 cm adhesive side border for rolls overlapping during installation. The total mass surface is kg/m² and dynamic stiffness (s') is MN/m³.

PTB Version: waterproof non woven anti-stretch backing for liquid screed

- high acoustic insulation performance in reduced thickness
- quick, simple and precise laying of the product
- resistant to humidity

PHYSICAL CHARACTERISTICS	Standard	Unit	Roll 5	Roll 7	Roll 10	Tolerance
Nominal thickness (1)	EN 12431	mm	5	7	10	+ 20%
Length		m		5,00	-	± 5%
Width (including 4 cm of the overlapping flap)	m		1,04			± 1%
Backing superficial mass	e/m*		90 standard; 110 PT			
Overall Superficial mass		kg/m³	1,8	2,4	2,8	± 11%
Colour			black/blue			· · · · · ·

ACOUSTIC CHARACTERISTICS	Standard	Unit	Roll 5	Roll 7	Roll 10	Tolerance
Dynamic stiffness (s')	EN 29052/1	MN/m ⁹	50	39	33	22
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1	MN/m ³	29	20	18	£2.
Improvement of impact insulation class (Δ IIC)	ASTM E 2179-08	CB.	22	24	27	
Impact sound reduction improvement (DLw) - by laboratory test	EN ISO 10140	CB.	18	21	23	
Impact sound reduction improvement (DLw) - calculated (3)	EN 12354/2	6B	24	26	27	

TECHNICAL CHARACTERISTICS	Standard	Unit	Roll 5	Roll 7	Roll 10	Tolerance
Compression at 10% strain	EN 825	kPa	1,64	2,36	4,18	± 5%
Compression strain (dL - 250 Pa)	EN 12431	mm	5,9	8,4	10,8	
Compression strain (dF - 2000 Pa)	EN 12431	mm	4,9	7,6	9,7	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	4,4	7,0	9,0	
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,099			
Resistance factor to water vapour (µ)	EN 12086 10 standard; 5000 PTB		000 PTB			
Fire grade	2000/147/CE		F			

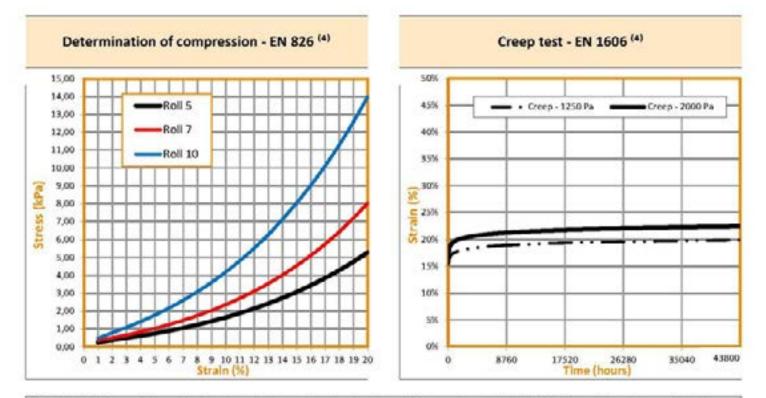
PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

[™] Product thickness measured according to norm EN 12431 equal to the value of "Compression strain (dB - 50000 → 2000 Pa)"

(1) Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

⁽³⁾ Value calculated with dynamic stiffness for dry-mount applications and a screed weight equal to 75 kg/m²


The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Roll

Roll

Sound insulation for floating floors

⁽⁴⁾ The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Sound insulation for floating floors

Product description and Technical Specification

..... mm acoustic insulation rolls, made of EPDM (Ethylene Propylene Diene Monomer) rubber granules compacted using a latex binder in a hot process. A grey synthetic, 100g/m² non woven anti-stretch backing is applied on one side. The dimensions of the roll are: 500 cm lenght, 104 cm width including 4 cm adhesive side border for rolls overlapping during installation. The total mass surface is kg/m² and dynamic stiffness (s') is MN/m³.

PTB Version: waterproof non woven anti-stretch backing for liquid screed

- high sound insulation performance
- · quick, simple and precise laying of product,
- resistant to humidity

PHYSICAL CHARACTERISTICS	Standard	Unit	Grei 5	Grei 8	Tolerance
Nominal thickness (1)	EN 12431	mm	5	8	± 20%
Length		m	5.	00	± 5%
Width (including 4 cm of the overlapping flap)	m		1.04		± 1%
Backing superficial mass	g/m ¹		100 standa		
Overall Superficial mass		kg/m ²	2.4	2.9	# 10%
Colour			gr		

ACOUSTIC CHARACTERISTICS	Standard	Unit	Grei 5	Grei 8	Telerance
Dynamic stiffness (s')	EN 29052/1	MN/m ³	26	17	±2
Dynamic stiffness for dry application (1)	EN 29052/1	MN/m ³	15	11	±2
Improvement of impact insulation class (Δ IIC)	ASTM E 2179-03	68	25	25	
Impact sound reduction improvement (ΔLw) - by laboratory test	EN ISO 10140	dB	23	24	
Impact sound reduction improvement (ΔLw) - calculated ⁽³⁾	EN 12354/2	dB	29	30	

TECHNICAL CHARACTERISTICS	Standard	Unit	Grei 5	Grei 8	Tolerance
Compression at strain 10%	EN 825	kPa	2.55	2.25	± 5%
Compression strain (dL - 250 Pa)	EN 12431	mm	7.3	9.6	
Compression strain (dF - 2000 Pa)	EN 12431	mm	6.3	8.7	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	5.9	8.3	
Thermal conductivity coefficient (λ)	EN 12657	W/mK	0.067		
Resistance factor to the spread of water vapour (µ)	EN 12085		10 standard; 5000 PTB		
Fire grade	2000/147/CE E				

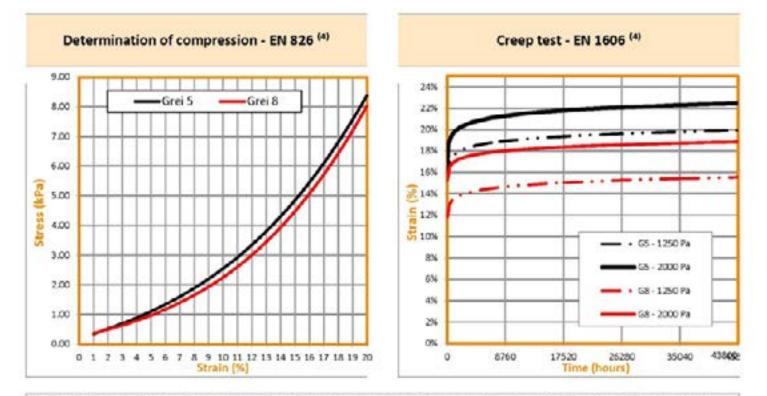
PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing.

^(II) Product thickness measured according to norm EN 12431 equal to the value of "Compression strain (dB - 50000 -> 2000 Pa)"

⁽²⁾ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

¹⁰ Value calculated with dynamic stiffness for dry-mount applications and a screed weight equal to 75 kg/m²


The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

Grei

Grei

Sound insulation for floating floors

⁽⁴⁾ The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Sound insulation for floating floors

Product description and Technical Specification

8 mm-thick acoustic insulation rolls, made of EPDM (Ethylene Propylene Diene Monomer) rubber granules that are anchored with carboxylate latex binder to a backing, made with 80 g/m² non-woven, green-coloured, anti-stretch film and 200 g/m² polyester fibre. Each roll is 500 cm lenght x 104 cm width including a 4 cm adhesive side border for rolls overlapping during installation. The total mass surface is 2.60 kg/m² and the dynamic stiffness (s') is 12 MN/m³.

PTB Version: waterproof non woven anti-stretch backing for liquid screed

- very high acoustic and thermal performance
- extremely easy to lay
- eco-compatible

PHYSICAL CHARACTERISTICS	Standard	Unit	Upgrei 8	Tolerance
Nominal thickness (1)	EN 12431	mm	8	± 10%
Length		m	5,00	± 5%
Width (including 4 cm of the overlapping flap)		im.	1,04	± 1%
Backing superficial mass		8/m3	80 standard; 100 PTB	
Overall Superficial mass		kg/m²	2,60	± 10%
Colour			grey/green	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Upgrei 8	Tolerance
Dynamic stiffness (s')	EN 29052/1	MN/m ^a	12	= 1
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1	MN/m ³	9	11
Improvement of impact insulation class (Δ IIC)	ASTM E 2179-03	dB	25	
Impact sound reduction improvement (ΔLw) - by laboratory test	EN 150 10140	d6	26	2
Impact sound reduction improvement (ΔLw) - calculated ⁽³⁾	EN 12354/2	dB	32	

TECHNICAL CHARACTERISTICS	Standard	Unit	Upgrei 8	Tolerance
Compression at strain 10%	£N 826	kPa	1,75	± 5%
Compression strain (dL - 250 Pa)	EN 12431	mm	10,7	
Compression strain (dF - 2000 Pa)	EN 12431	mm	9,1	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	7,5	
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,047	2
Resistance factor to the spread of water vapour (µ)	EN 12086		9	
Fire grade	2000/147/CE		F	

PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

¹⁰ Product thickness measured according to norm EN 12431 equal to the value of "Compression strain (dB - 50000 -> 2000 Pa)"

⁽²⁾ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

⁽³⁾ Value calculated with dynamic stiffness for dry-mount applications and a screed weight equal to 75 kg/m²


The suggestions and bedraical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

Upgrei

Upgrei

Sound insulation for floating floors

⁽⁴⁾ The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Sound insulation for floating floors

Product description and Technical Specification

..... mm acoustic insulation rolls, made of SBR (Stirene Butadiene Rubber) fibres and granules rubber compacted with a polyurethane binder in a hot process. The colour of the product is black and it is supplied in rolls m lenght, 1.00 m width. Density is 730 kg/m³ and the dynamic stiffness (s') is MN/m³.

- high density for special applications
- good acoustic insulation in reduced thickness
- long-lasting also in presence of water

PHYSICAL CHARACTERISTICS	Standard Unit	3.	4	5	6	8	10	Tolerance
Nominal thickness (1)	EN 12431 mm	3	4	5	6	8	10	± 20%
Length	m	20		10		8	6	1.5%
Width	m			1,	00			1.1%
Density	kg/m*		1	7	30		- 3	
Overall Superficial mass	kg/m*	2,2	2,9	3,7	4,4	5,8	7,3	± 11%
Colour		-		bla	ack			

ACOUSTIC CHARACTERISTICS	Standard	Unit	3	- 4	5	6	8	10	Tolerance
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1	MN/m*	77	70	63	62	49	47	+2
Improvement of impact insulation class (Δ IIC)	ASTM E 2179-03	dB	-	26	-	-	-	-	
Impact sound reduction improvement (ΔLw) - by laboratory test	EN ISO 10340	dB.	•	22	-	-	-		
Impact sound reduction improvement (ALw) - calculated (9)	EN 12354/2	dB	18	19	20	20	21	22	

TECHNICAL CHARACTERISTICS	Standard	Unit	3	4	5	6	8	10	Tolerance
Compression at strain 10%	EN 826	kPa	102	98	82	133	118	179	± 5%
Compression strain (dL - 250 Pa)	EN 12431	mm	2,8	4,0	5,2	6,0	7,9	9,7	
Compression strain (dF - 2000 Pa)	EN 12431	100	2,7	3,9	5,1	5,8	7,8	9,6	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	2,6	3,9	5,1	5,8	7,7	9,5	
Hardness	DIN 53505	Shore A	The second s						
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,12						
Fire grade	DIN 4102		B2						

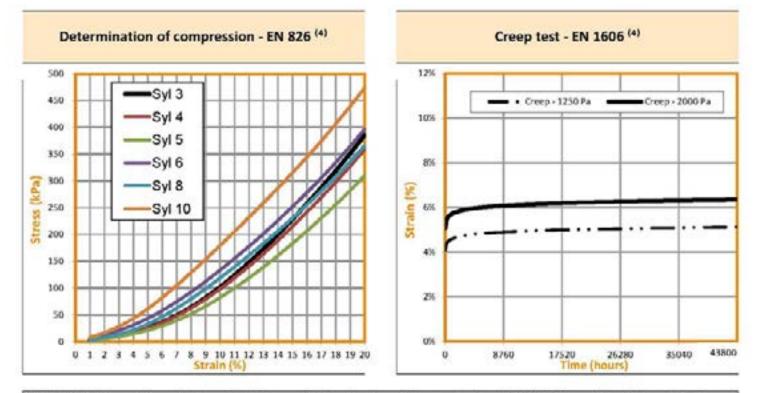
PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

¹⁰ Product thickness measured according to norm EN 12431 equal to the value of "Compression strain (dB - 50000 → 2000 Pa)"

⁽³⁾ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

⁽³⁾ Value calculated with dynamic stiffness for dry-mount applications and a screed weight equal to 75 kg/m²


The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Syl

Syl

Sound insulation for floating floors

⁽⁴⁾ The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Sound insulation for floating floors

Product description and Technical Specification

..... mm acoustic insulation rolls, made of SBR (Stirene Butadiene Rubber) fibres and granules rubber compacted with a polyurethane binder in a hot process. The colour of the product is black and it is supplied in rolls m lenght, 1.00 m width. Density is 730 kg/m³ and the dynamic stiffness (s') is MN/m³.

- high density for special applications
- good acoustic insulation in reduced thickness

long-lasting also in presence of water									
PHYSICAL CHARACTERISTICS	Standard	Unit	3	4	5	6	8	10	Tolerance
Nominal thickness (1)	EN 12431	mm	3	4	5	6	8	10	± 20%
Length		m	20		10		8	6	± 5%
Width		m	1,05 1,25		± 1%				
Density		kg/m³	730						
Overall Superficial mass	3	kg/m²	2,2	2,9	3,7	4,4	5,8	7,3	±11%
Colour			black						

ACOUSTIC CHARACTERISTICS	Standard	Unit	3	4	5	6	8	10	Tolerance
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1	MN/m ³	77	70	63	62	49	47	12
Improvement of impact insulation class (Δ IIC)	ASTM E 2179-03	68	-	-	26	-	-	-	
Impact sound reduction improvement (ΔLw) - by laboratory test	EN ISO 10140	đВ	-	-	22	-	-		
Impact sound reduction improvement (ΔLw) - calculated ⁽⁴⁾	EN 12354/2	dВ	18	19	20	20	21	22	

TECHNICAL CHARACTERISTICS	Standard	Unit	3	4	5	6	8	10	Tolerance
Compression at strain 10%	EN 826	kPa	10Z	98	82	133	118	179	± 5%
Compression strain (dL - 250 Pa)	EN 12431	mm	2,8	4,0	5,2	6,0	7,9	9,7	
Compression strain (dF - 2000 Pa)	EN 12431	mm	2,7	3,9	5,1	5,8	7,8	9,6	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	2,6	3,9	5,1	5,8	7,7	9,5	
Tensile strength	150 1798	МРа	0,42						
Hardness	DIN 53505	Shore A			48	-52			
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,12						
Fire grade	DIN 4102		B2						

PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

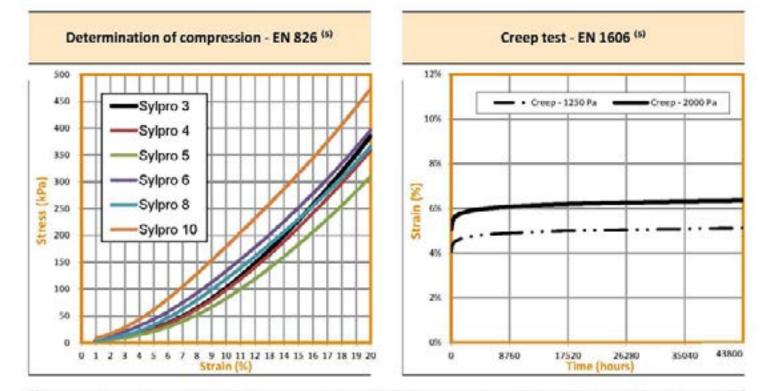
⁽¹⁾ Product thickness measured according to norm EN 12431 equal to the value of "Compression strain (dB - 50000 -> 2000 Pa)"

⁽¹⁾ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

^{(II} Test Report n. 2008_0097.04 of 2008 in MA39 of Vienna; floating parquet

⁽⁴⁾ Value calculated with dynamic stiffness for dry-mount applications and a screed weight equal to 85 kg/m²

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.



Sylpro

Sylpro

Sound insulation for floating floors

^{EB} The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Sylcer

Sound insulation beneath ceramic or stone floor tiles

Product description and Technical Specification

3 mm acoustic insulation rolls, made of SBR (Stirene Butadiene Rubber) granules rubber and EPDM (Ethylene Propylene Diene Monomer) granules rubber compacted using a polyurethane binder in a hot process. The colour of the product is black and it is supplied in rolls 20 m lenght, 1.00 m width. Density is 820 kg/m³.

- minimal thickness
- easy to install
- direct application over existing floorings

PHYSICAL CHARACTERISTICS	Standard Unit	Sylcer 3	Tolerance
Nominal thickness (1)	EN 12431 mm	3	±0.3
Length	m	20	1.5%
Width	m	1,00	± 1.5%
Density	kg/m³	820	± 5%
Overall Superficial mass	kg/m²	2,46	± 5%
Colour		black/green	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Sylcer 3	Tolerance
Dynamic stiffness (s')	EN 29052/1	MN/m3	460	± 20
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1	MN/m ³	180	± 20
Improvement of impact insulation class (Δ IIC)	ASTM E 2179-03	dB .	21	
Impact sound reduction improvement (ΔLw) - by laboratory test	EN ISO 10140	CB	17	34

TECHNICAL CHARACTERISTICS	Standard	Unit	Sylcer 3	Tolerance
Compression at strain 10%	EN 826	kPa	376	1.576
Compression strain (dL - 250 Pa)	EN 12431	mm	3,3	
Compression strain (dF - 2000 Pa)	EN 12431	mm	3,2	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	3,1	
Hardness	DIN 53505	Shore A	55	1.5
Thermal conductivity coefficient (λ)	EN 12657	W/mK	0,12	1
Resistance factor to the spread of water vapour (µ)	60 12572		14	
Fire grade	2000/147/CE		B2	

PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

¹⁰ Product thickness measured according to norm EN 12431 equal to the value of "Compression strain (dB - 50000 -> 2000 Pa)"

⁴¹ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

(1) Test report: concrete slab 14 cm, screed in sand and cement 5 cm, SylCer glue on screed, ceramic tiles 1 cm glue on SylCer

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Creep test - EN 1606 (4) Determination of compression - EN 826 (4) 10% 1200 Sylcer 3 1100 9% Creep - 1250 Pa Creep - 2000 Pa 1000 8% 900 7% 800 6% Stress (kPa) Strain (%) % 700 600 500 400 3% 300 2% 200 1% 100 0% Ú 43800 8 9 10 11 12 18 14 15 16 17 18 19 20 0123456 7 0 8760 17520 26280 35040 Strain (%) Tim (hours

Sound insulation beneath ceramic or stone floor tiles

⁶⁴³ The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Sylwood

Acoustic insulation for reducation of impact sound/noise under wood floors

Product description and Technical Specification

..... mm-thick acoustic insulation rolls, made of SBR (Stirene Butadiene Rubber) rubber granules and cork granules that are anchored and hot pressed with polyurethane adhesive. Each roll is m lenght x 1,00 m width. Density is 700 kg/m³.

- good acoustic insulation in reduced thickness
- easy to install
- suitable for application onto existing floors

PHYSICAL CHARACTERISTICS	Standard Unit	Sylwood 3	Sylwood 5	Tolerance	
Nominal thickness (1)	EN 12431 mm	3	5	±0.3	
Length	m	20	10	± 1.5%	
Width	m	1	,00	± 1.5%	
Density	kg/m)	7	700		
Overall Superficial mass	kg/m ¹	2,1	3,5	± 5%	
Colour		blac	k/cork		

ACOUSTIC CHARACTERISTICS	Standard	Unit	Sylwood 3	Sylwood 5	Tolerance
Dynamic stiffness (s')	EN 29052/1	MN/m ³	625	485	±20
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1	MN/m ³	235	225	± 20
Improvement of impact insulation class (Δ IIC) ⁽³⁾	ASTM E 2179-03	dВ	24	24	
Impact sound reduction improvement (ΔLw) ⁽³⁾	EN ISO 10140	¢6	20	20	
Impact sound reduction improvement (ΔLw) ⁽⁴⁾	EN ISO 10140	dB	17		

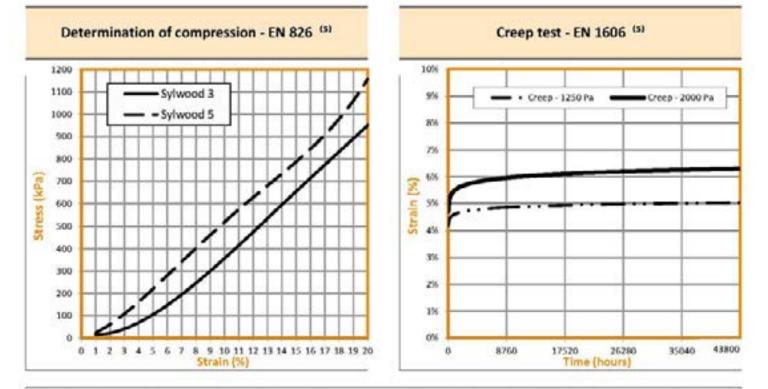
TECHNICAL CHARACTERISTICS	Standard	Unit	Sylwood 3	Sylwood 5	Tolerance
Compression at strain 10%	EN 826	kPa .	357	519	± 5%
Compression strain (dL - 250 Pa)	EN 12431	mm	3,2	5,0	
Compression strain (dF - 2000 Pa)	EN 12431	mm	3,1	4,9	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	3,1	4,9	
Hardness	DIN 53505	Shore A	5	5	15
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,	12	
Resistance factor to the spread of water vapour (µ)	150 12572		1	4	
Fire grade	DIN 4102		8	2	

PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

¹⁸ Product thickness measured according to norm EN 12431 equal to the value of "Compression strain (db - 50000 -> 2000 Pa]"

¹² Measurement executed in deviation from norm (N 29052-1, without applying plaster on the test piece


11 Test seport: CA floor 14 cm, sand-cement screed 5 cm, dry-mounted Sylwood, 1.5 cm parquet dry-mounted on Sylwood

³⁸ Test report: CA floor 14 cm, sand-cement screed 5 cm, Sylwood glued to screed, 1.5 cm parquet glued to Sylwood:

The suggestions and technical information gives above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Sylwood

Acoustic insulation for reducation of impact sound/noise under wood floors

⁽⁵⁾ The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Sound insulation for walls

Product description and Technical Specification

..... mm acoustic insulation panels, made of SBR (Stirene Butadiene Rubber) rubber granules and EPDM (Ethylene Propylene Diene Monomer) rubber granules compacted using a polyurethane binder in a hot process. A non-woven, nonstretch synthetic backing is applied on both sides for added protection. The panels dimensions are 1,2 m lenght and 1 m width with a density of kg/m3.

- durab
- easy

Colour

 durable material easy to install high resistance to humidity and condensation 			Standard I	Carlos Carlos	ana	No. of Concession, Name
PHYSICAL CHARACTERISTICS Standard	Unit	10	15	20	30	Tolerance
Nominal thickness	mm	10	15	20	30	±1
Length	m		1,	20		± 0.01
Width	m		1,	00		± 0.01
Density	kg/m*	800		700		± 5%
Overall Superficial mass	kg/m²	8,0	10,5	14,0	21,0	± 5%

ACOUSTIC CHARACTERISTICS	Standard	Unit	10	15	20	30
Wall composition - 260 mm thick				Const State		
A: plaster 15 mm, hollow brick 80 mm, plaster 10 mm				53		
B: Mustwall and air cavity				A	B	C
C: hollow brick 80 mm, plaster 15 mm						
Transmission loss (Rw)	EN ISO 10140	6 8	53 (1)		55 (2)	-
TECHNICAL CHARACTERISTICS	Standard	Unit	10	15	20	30
Thermal conductivity coefficient (λ)	EN 12667	W/mK		0,	109	
Fire grade	2000/147/CE			19	F	

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

^{III} Test Report n. 3903/RP/05 of 2005; ITC of San Giuliano Milanese (MI) 10 Test Report n. 4267/RP/06 of 2006; ITC of San Giuliano Milanese (MI)

The suggestions and bedwical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

grey / black

Destriction of the state

Mustwall M

ASC CONTRACT

Mustwall M AD

TECHNICAL DATA SHEET

Sound insulation for walls

Product description and Technical Specification

..... mm acoustic insulation panels, made of SBR (Stirene Butadiene Rubber) fibres and granules compacted using a polyurethane binder in a hot process. A black non-woven backing, non-stretch synthetic is applied on one side for added protection. The panels dimensions are 1,2 m lenght and 1 m width with a density of 800 kg/m³.

- high acoustic insulation in reduced thickness
- easy to install
- high resistance to humidity and condensation

PHYSICAL CHARACTERISTICS	Standard Unit	10 AD	15 AD	20 AD	30 AD	40 AD	Tolerance
Nominal thickness	mm	10	15	20	30	40	±1
Length	m			1,20			± 0.01
Width	m	-		1,00			± 0.01
Density	kg/m*			800			± 5%
Overall Superficial mass	kg/m²	8,0	12,0	16,0	24,0	32,0	± 5%
Colour		6	010	black	(m. 197	-	

ACOUSTIC CHARACTERISTICS	Standard	Unit	10 AD	15 AD	20 AD	30 AD	40 AD
Wall composition - 260 mm thick			1				
A: plaster 15 mm + hollow brick 80 mm + plast	ter 10 mm			53			
B: Mustwall and air cavity				A	B	C	
C: hollow brick 80 mm + plaster 15 mm							
Transmission loss (Rw) (1)	EN 12354-1	68	54	55	56	56,5	57
TECHNICAL CHARACTERISTICS	Standard	Unit	10 AD	15 AD	20 AD	30 AD	40 AD
Thermal conductivity coefficient (λ)	EN 12667	W/mK			0,12		
Fire grade	DIN 4102		1		B2		

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

^{III} Calculated value with EN 12354-1

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Mustwall 33B

Acoustic and thermal insulation for line existing walls and ceilings

Product description and Technical Specification

33 mm-thick acoustic insulation pre-assembled panels, made of a 20 mm-thick SBR (Stirene Butadiene Rubber) rubber granules, density 500 kg/m³ couple with a 12.5 mm-thick plasterboard. The panels dimensions are 1.20 m width x 2.00 m lenght.

- thermal and sound insulating
- long term durability and stability
- eco-compatible

PHYSICAL CHARACTERISTICS	Norm Unit	Mustwall 33B	Tolerance
Nominal thickness	mm	33	11
Length	m	2,00	± 0.005
Width	m	1,20	± 0.005
Overall Superficial mass	kg/m²	19,5	1.5%
Colour		black / white	

ACOUSTIC CHARACTERISTICS	Norm	Unit	Mustwall 33B
Wall composition 19.5 cm thick - certified			
A: coating made with: Mustwall 338 + 12.5 mi	m plasterboard		
B: 12 cm hollow block wall (12/25/50) + 1.5 cr	n plaster on both sides		AB
Transmission loss (Rw)	EN ISO 10140	d8	54 (1)
Wall composition 17.1 cm thick- certified			
A: coating made with: Mustwall 338 + 12.5 mi	m plasterboard		
B: 8 cm hollow block wall (8/25/50)			(A) B (C)
C: coating made with: Mustwall 338 + 12.5 mr	n plasterboard		
Transmission loss (Rw)	EN ISO 10140	d8	53 (1)
TECHNICAL CHARACTERISTICS	Norm	Unit	Mustwall 338

TECHNICAL CHARACTERISTICS	Norm Unit	Mustwall 33B	
Thermal resistance (R)	EN 12667 m ² K/W	0,229	
Fire grade	EN 18501-1	F	

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

^{itt} Values obtained in Isolgomma acoustic laboratory

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Fybro

Thermal and acoustic insulation for walls and ceilings

Product description and Technical Specification

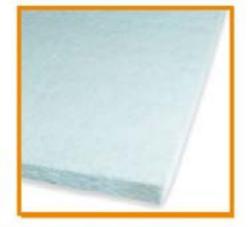
Airborne noise insulation in mm thick made of polyester fibre; density 40 kg/m³. The panels dimensions are 120 cm lenght, 60 cm width.

- hypoallerginic
- eco-compatible
- not putrefying

PHYSICAL CHARACTERISTICS	Unit	FYBRO 30	FYBRO 50	Tolerance
Nominal thickness	mm	30	50	± 10%
Length	m	1,	20	± 0.005
Width	m	0,	60	1 0.005
Density	xg/m*	4	0	± 10%
Overall Superficial mass	kg/m³	1,2	2,0	± 10%
Colour		gre	en	

ACOUSTIC CHARACTERISTICS	Norm	Unit	FYBRO 30	FYBRO 50
Wall composition - 29 cm thick				
A: plaster 1,5 cm + hollow brick 12 cm + plaster 1.0 cm				
B: Fybro 50				
C: hollow brick 8 cm + plaster 1,5 cm				
Transmission loss (Rw)	EN ISO 10140	d8	-	54 (1)
Wall composition - 12.5 cm thick				
A: gypsum board double layer + 1.25x2 cm ifixed to 75 mm metal frame			A	B
B: Fybro 30 double layer into metal frame			Y	
C: gypsum board double layer + 1.25x2 cm ifixed to 75 mm metal frame				82
Transmission loss (Rw)	EN ISO 10140	d8	56 (1)	- 1

TECHNICAL CHARACTERISTICS	Norm	Unit	FYBRO 30	FYBRO 50
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,0	036
Resistance factor to the spread of water vapour (µ)	EN 12086		3	,2
Fire grade	EN 13501-1		B - s:	2 - d0


PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

19 Values obtained in Isolgomma acoustic laboratory

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Biwall

Acoustic and thermal walls and ceilings insulation

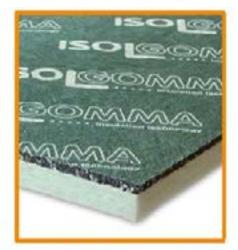
Product description and Technical Specification

Airborne noise insulation in 40 mm thick pre-assembled panels made of a panel 10 mm thickness SBR (Stirene Butadiene Rubber) rubber granules and EPDM (Ethylene Propylene Diene Monomer) rubber granules anchored to a non-woven anti-stretch synthetic backing and hot pressed with polyurethane binder, density of 800 kg/m³; a 3 cm thick polyesther fibre panel with density 40 kg/m³. The panels dimensions are 1.20 m length and 1 m width.

- high acoustic insulation value
- high thermal insulation value
- easy to lay

PHYSICAL CHARACTERISTICS	Unit	8iwali 40	Tolerance
Nominal thickness	mm	40	12
Length		1,20	± 0.01
Width	m	1,00	± 0.01
Density (rubber panel + polyester panel)	kg/m*	800 + 40	± 516
Overall Superficial mass	kg/m³	9,20	± 5%
Colour		green	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Biwall 40
Wall composition - 25 cm thick			
A: plaster 1,5 cm + hollow brick 8 cm +plaster 1.0 cm			A B C
B: Biwall 40			
C: hollow brick 8 cm + plaster 1,5 cm			
Transmission loss (Rw)	EN ISO 10140	dB	54 (1)
Wall composition - 28 cm thick			
A: plaster 1,5 cm + hollow brick 12 cm + plaster 1.0 cm			A B G
B: Biwall 40			
C: hollow brick 8 cm + plaster 1,5 cm			
Transmission loss (Rw)	EN ISO 10140	dB	55 (2)


TECHNICAL CHARACTERISTICS	Standard Unit	Biwall 40	0
Thermal conductivity coefficient (λ)	EN 12667 W/K	0,047	
Fire grade	2000/147/CE	F	

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

¹⁰ Test Report n. 4266/RP/06 of 2006; ITC of San Giuliano Milanese (MI)
¹⁰ Test Report n. 4268/RP/06 of 2006; ITC of San Giuliano Milanese (MI)

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. SOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of SOLGOMMA and all rights are therefore reserved.

Trywall

Thermal and acoustic insulation for light walls and ceilings

Product description and Technical Specification

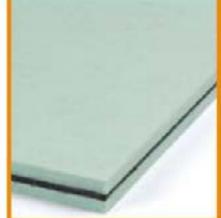
Airborne noise Insulation in 48 mm thick pre-assembled panels made of a central panel SBR (Stirene Butadiene Rubber) rubber granules and EPDM (Ethylene Propylene Diene Monomer) rubber granules thickness 8 mm, density 800 kg/m³. hot pressed with an polyurethane binder; on both external sides there are two panels in polyester fibre thickness 20 mm each, density 60 kg/m³. The panels dimensions are: 1,2 m length and 0,6 m width.

- high thermal and acoustic insulation value
- excellent resistance with humidity

 excellent resistance to fire 			
PHYSICAL CHARACTERISTICS	Unit	Trywall 48	Tolerance
Nominal thickness	internet and a second sec	48	±2
Length	m	1,20	± 0.01
Width	m	0,60	±0.01
Density	kg/m*	60 + 800 + 60	± 5%
Overall Superficial mass	kg/m²	8,80	± 5%
Colour		green	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Trywall 48
Wall composition - 100 mm thick			AND
A: Gypsum-board double layer, 12.5mm x2			(\mathbf{A}) \mathbf{B} (\mathbf{C})
B: Trywall panel, inside the metal structure 50 mm			M
C: Gypsum-board double layer, 12.5mm x2			
Transmission loss (Rw)	EN ISO 10140	¢8	54 (1)
Wall composition - 160 mm thick		1	
A: Gypsum-board double layer + 12.5mm x2 fixed to an 50	mm metal structure	()	A) (B) (C)
B: Trywall panel, inside the metal structure 50 mm			
C: Gypsum-board double layer + 12.5mm x2 fixed to an 50	mm metal structure		
Transmission loss (Rw)	EN ISO 10140	68	59 (1)
Wall composition - 200 mm thick		17	
A: Gypsum-board double layer + 12.5mm x2 fixed to an 50	0 mm metal structure	0	A) (B) (C
B: Trywall panel		1	Y 🚵 Y
C: Gypsum-board double layer + 12.5mm x2 fixed on an 50) mm metal structure	charle	
Transmission loss (Rw)	EN ISO 10140	68	60 ⁽¹⁾
TECHNICAL CHARACTERISTICS	Standard	Unit	Trywall 48
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,047

Fire grade


PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

EN 13501-1

19 Values obtained in Isolgomma acoustic Taboratory.

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

F

Rewall 40

Acoustic and thermal insulation for line existing walls and ceilings

Product description and Technical Specification

Airborne noise insulation in 40 mm-thick pre-assembled panels, made of a 8 mmthick SBR (Stirene Butadiene Rubber) rubber granules hot pressed with polyurethane binder, density of 800 kg/m³, a 20 mm-thick polyester fiber panel, density of 100 kg/m³, and a 12.5 mm-thick plasterboard. The panels dimensions are 1.20 m width x 2.00 m length.

- thermal and sound insulating
- long term durability and stability
- eco-compatible

PHYSICAL CHARACTERISTICS	Standard Unit	Rewall 40	Tolerance
Nominal thickness	mm	40	+1
Length	m	2,00	± 0.005
Width	m	1,20	± 0.005
Overall Superficial mass	kg/m?	18	± 5%
Colour		green / black / white	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Rewall 40
Wall composition 205 mm thick- certified			
A: coating made with: Rewall 40 + 12.5 mm plasterboard	f.		
B: 120 mm hollow block wall (12/25/50) + 15 mm plaster	on both side	es	AB
Transmission loss (Rw) (1)	EN ISO 10140	dB	57 ⁽¹⁾
Wall composition 18,5 cm thick - certified			
A: coating made with: Rewall 40 + 12.5 mm plasterboard			
B: 80 mm hollow block wall (8/25/50)			(A) (B) (C)
C: coating made with: Rewall 40 + 12.5 mm plasterboard			
Transmission loss (Rw) (1)	EN ISO 10140	68	60 ⁽¹⁾
TECHNICAL CHARACTERISTICS	Standard	Unit	Rewall 40
Thermal resistance (R)	EN 12667	m [×] K/W	0,761

PACKING AND STORING

Fire grade

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

EN 13501-1

F

10 Values obtained in Isolgomma acoustic laboratory.

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

Rewall 33B

TECHNICAL DATA SHEET

Acoustic and thermal insulation for line existing walls and ceilings

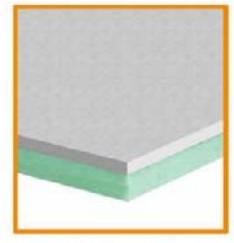
Product description and Technical Specification

Airborne noise insulation in 33 mm-thick pre-assembled panels, made of a 20 mmthick polyester fiber panel, density of 100 kg/m³ and a 12.5 mm-thick plasterboard slab. The panels dimensions are 1.20 m width x 2.00 m lenght.

- thermal and sound insulating
- long term durability and stability.
- eco-compatible

PHYSICAL CHARACTERISTICS	Standard Unit	Rewall 338	Tolerance
Nominal thickness	mm	33	11
Length	m	2,00	± 0.005
Width	m	1,20	± 0.005
Overall Superficial mass	sg/m*	11,5	1.5%
Colour		green / white	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Rewall 338	Tolerance
Wall composition 195 mm thick - certified		14		
A: coating made with: Rewall 33B + 12.5 mm pl	asterboard	1		
B: 120 mm hollow block wall (12/25/50)+ 15 m	m plaster on both sides	s ()	В	
Transmission loss (Rw) ⁽¹⁾	EN ISO 10140	dB	56 ⁽¹⁾	
Wall composition 171 mm thick - certified				
A: coating made with: Rewall 33B + 12.5 mm pl	asterboard	1		2
B: 80 mm hollow block wall (8/25/50)		(A) (B) (C	(u)
C: coating made with: Rewall 33B + 12.5 mm pl	asterboard	2		-
Transmission loss (Rw) (1)	EN ISO 10140	dB	54 (1)	1


TECHNICAL CHARACTERISTICS	Standard Un	Rewall 338	Tolerance
Thermal resistance (R)	EN 12667 m ² K	/w 0,688	
Fire grade	EN 13501-1	F	

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

(") Values obtained in Isolgomma acoustic laboratory.

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Rewall 28R

Acoustic and thermal insulation for line existing walls and ceilings

Product description and Technical Specification

Airborne noise insulation in 28 mm-thick pre-assembled panels, made of a 8 mmthick SBR (Stirene Butadiene Rubber) rubber granules hot pressed with polyurethane binder, density of 800 kg/m³ and a 20 mm-thick polyester fiber panel, density of 100 kg/m³. The panels dimensions are 1.20 m width x 1.00 m lenght.

- thermal and sound insulating
- long term durability and stability
- eco-compatible

PHYSICAL CHARACTERISTICS	Standard Unit	Rewall 28R	Tolerance
Nominal thickness	mm	28	11
Length	m	1,00	± 0.005
Width	m	1,20	± 0.005
Overall Superficial mass	sg/m*	8,4	± 5%
Colour		green / black	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Rewall 28R	
Wall composition 20.5 cm thick - certified A: coating made with: Rewall 28R + 2x12.5 B: 120 mm hollow block wall (12/25/50) + 1		5	AB	
Transmission loss (Rw) (1)	EN ISO 10140	dB	57 (1)	
Wall composition 18.5 cm thick - certified				
A: coating made with: Rewall 28R + 2x12.5	mm plasterboard			2
B: 80 cm hollow block wall (8/25/50)			(A) B (C	•)
C: coating made with: Rewall 28R + 2x12.5	mm plasterboard			
Transmission loss (Rw) (1)	EN ISO 10140	d8	60 ⁽¹⁾	
TECHNICAL CHARACTERISTICS	Standard	Unit	Rewall 28R	Tolerance

PACK	ING	AND	STOR	ING

Thermal resistance (R)

Fire grade

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

EN 12667

EN 18501-1

m² K/W

0,700

F

(*) Values obtained in Isolgomma acoustic laboratory .

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Natur

TECHNICAL DATA SHEET

Thermal - acoustic insulation for walls and ceilings

Product description and Technical Specification

Airborne noise insulation panel in mm made of Kenaf fibers, mixed with a fiber cross-linking, and compacted by a hot-mechanical process; density 50 kg/m³. The panels dimensions are 1,2 m length and 0,6 m width.

- high acoustic and thermal insulation value
- eco-compatible
- high breathability

PHYSICAL CHARACTERISTICS	Unit	Natur 30	Natur 50	Tolerance
Nominal thickness	mm	30 50		± 10%
Length	m	1,20		±0.01
Width	m	0,60		± 0.01
Density	kg/m*	50		±10%
Overall Superficial mass	kg/m³	1,5 2,5		± 10%
Colour		bro	wn	

ACOUSTIC CHARACTERISTICS	Norm	Unit	Natur 50
Wall composition - 29 cm thick			
A: plaster 1,5 cm + hollow brick 12 cm + plaster 1.0 cm			A B G
B: Natur 50			ABC
C: hollow brick 8 cm + plaster 1,5 cm		10	and then the second second second
Transmission loss (Rw)	EN ISO 10140	d8	54 10
Wall composition - thickness 12.5 cm			(NICITO)
A: gypsum board double layer + 1.25 cm x 2 fixed to 75 mm metal frame			(A)[B](C)
B: Natur 50 in 75 mm metal frame			T
C: gypsum board double layer + 1.25 cm x 2 fixed to 75 mm metal frame			
Transmission loss (Rw)	EN ISO 10140	d8	54 (10
Wall composition - thickness 22 cm		05	
A: gypsum board double layer + 1.25 cm x 2 fixed to 75 mm metal frame		(A)	
8: Natur 50 into 75mm metal frame + 1.25 cm gypsum board layer		M	
C: Natur 50 into 75 mm metal frame			
Transmission loss (Rw)	EN ISO 10140	d8	65 ⁽¹⁾
TECHNICAL CHARACTERISTICS	Norm	Unit	Natur 30 Natur 50
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,035
Resistance factor to the spread of water vapour (µ)	EN 12086		2,3

Fire grade PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

EN 13501-1

⁽¹⁾ Values obtained in Isolgomma acoustic laboratory

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

F

Natur 33B

Acoustic and thermal insulation for line existing walls and ceilings

Product description and Technical Specification

Airborne noise insulation in 33 mm-thick pre-assembled panels made of a 20 mmthick Kenaf fiber panel, density of 100 kg/m³ and a 12.5 mm thick plasterboard slab. The panels dimensions are 1.20 m width x 2.00 m lenght.

- thermal and sound insulating
- long term durability and stability.
- eco-compatible

PHYSICAL CHARACTERISTICS	Unit	Natur 338	Tolerance
Nominal thickness	mm	33	:1
Length	m	2,00	± 0.005
Width	m	1,20	± 0.005
Overall Superficial mass	isg/m²	11,5	± 5%
Colour	1	brown / white	

ACOUSTIC CHARACTERISTICS	Norm	Unit	Natur 338	
Wall composition 19.5 cm thick - certified				
A: coating made with: Natur 33B + 12.5 mm plas	sterboard		AB	
B: 12 cm hallow block wall (12/25/50) + 1.5 cm ;	plaster on both sides			
Transmission loss (Rw)	EN ISO 10140	dB	56 ⁽¹⁾	
TECHNICAL CHARACTERISTICS	Norm	Unit	Natur 33B	
Thermal resistance (R)	EN 12667	m² K/W	0.729 (2)	
Fire grade	EN 13501-1	2	F	

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

11 Values obtained in Isolgomma acoustic laboratory .

(1) Calculated value with thermal conductivity coefficient by the individual component

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Mineral

Thermal - acoustic insulation for walls and ceilings

Product description and Technical Specification

Airborne noise and thermal insulation in mm thick made of rock wool; density kg/m³. The panels dimensions are: 1 m length, 0,6 m width.

- high acoustic and thermal insulation value
- easy to install
- fire resistance

PHYSICAL CHARACTERISTICS	Unit	40-40	50-50	50-70	60-70	Tolerance
Nominal thickness	mm	40	50	50	60	-1/+3
Length	m	1,00		1000	t 2%	
Width	m	0,60			±1.5%	
Density	kg/m*	40 50 70			± 10%	
Overall Superficial mass	kg/m²	1,6	2,5	3,5	4,2	+ 10%
Colour			yel	low		

ACOUSTIC CHARACTERISTICS	Norm	Unit	40-40	50-50	50-70	60-70
Wall composition - 32 cm thick	- 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960 - 1960					
A: plaster 1,5 cm + hollow brick 12 cm			~	A)	B	
B: Mineral 50-50						
C: hollow brick 12 cm, plaster					8	
Transmission loss (Rw)	EN ISO 10140	dB		52 ^m	S	-
Wall composition - 12.5 cm thick				10	111 IC	
A: gypsum board double layer + 1.25 cm x 2 fixed	d to 75 mm metal frame		1	A	B) (C	1
B: Mineral 50-70 into 75 mm metal frame	ST 254 13430		3	210	210	
C: gypsum board double layer + 1.25 cm x 2 fixed	d to 75 mm metal frame					
c. gypsum bourd double ruyer + 1.25 cm x 2 jike	e an en anna constant frances					
Transmission loss (Rw)	EN ISO 10140	dB			57 (1)	
the first second s	Contraction of the Contraction o	dB	-	×	57 (1)	-
Transmission loss (Rw)	EN ISO 10140			· ·	20	A.
Transmission loss (Rw) Wall composition - 20 cm thick	EN ISO 10140			·	57 (1) B	c)
Transmission loss (Rw) Wall composition - 20 cm thick A: gypsum board double layer + 1.25 cm x 2 fixed	EN ISO 10140 d to 50 mm metal frame with	Mineral	50-70		20	

TECHNICAL CHARACTERISTICS	Norm	Unit	40-40	50-50	50-70	60-70		
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,037	0,035				
Resistance factor to the spread of water vapour (µ)	EN 12085		1					
Fire grade	EN 13501-1		A1					

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

^{IV} Values obtained in Isolgomma acoustic laboratory

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

145

Mineral 50R

Thermal - acoustic insulation for walls and ceilings

Product description and Technical Specification

Airborne noise and thermal insulation in 40 mm thick pre-assembled panels made of a 10 mm thick panel in SBR (Stirene Butadiene Rubber) rubber granules and EPDM (Ethylene Propylene Diene Monomer) granules rubber anchored to a non-woven anti stretch synthetic baking and hot pressed with polyurethane binder, density 800 kg/m³; a 4 cm thick rock wool panel, density 40 kg/m³. The panels dimensions are 1.20 m length and 1 m width.

- high acoustic insulation value
- high thermal insulation value
- · easy to lay

PHYSICAL CHARACTERISTICS	Unit	Mineral 508	Tolerance
Nominal thickness	mm	50	12
Length	m	1,20	± 0.01
Width	m	1,00	+0.01
Density (rubber panel + rock wool panel)	kg/m*	800 + 40	1.5%
Overall Superficial mass	kg/m²	9,60	± 5%
Colour		black/yellow	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Mineral SOR
Wall composition - 25 cm thick			
A: plaster 1,5 cm + hallow brick 8 cm + plaster 1.0 cm			
B: Mineral SOR			A B C
C: hollow brick 8 cm + plaster 1,5 cm			
Transmission loss (Rw)	EN 12354-1	dB	54 (1)
Wall composition - 28 cm thick			
A: plaster 1,5 cm + hollow brick 12 cm + plaster 1.0 cm		1	A B C
B: Mineral 50R		1	
C: hallow brick 8 cm + plaster 1,5 cm			
Transmission loss (Rw)	EN 12354-1	dB	55 (1)

TECHNICAL CHARACTERISTICS	Standard Unit	Mineral 50R	
Thermal resistance (R)	EN 12667 m ⁹ K/W	1.173 (2)	
Fire grade	EN 13501-1	F	

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

19 Colculated value according to EN 12354-1

(2) Calculated value with thermal conductivity coefficient by the individual component

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Mineral 48RM

Thermal-acoustic insulation for light walls and ceilings

Product description and Technical Specification

Airborne noise Insulation in 48 mm thick pre-assembled panels made of a central panel SBR (Stirene Butadiene Rubber) rubber granules and EPDM (Ethylene Propylene Diene Monomer) rubber granules thickness 8 mm, density 800 kg/m³, hot pressed with an polyurethane binder; on both external sides there are two panels in rock wool thickness 20 mm each, density 100 kg/m³. The panels dimensions are: 1,0 m length and 0,625 m width.

- high thermal and acoustic insulation value
- excellent resistance with humidity
- excellent resistance to fire

10 200
All and the second
A CONTRACT OF
100000000000000000000000000000000000000
A State and the second state
A CONTRACT OF A
Construction of the second
Contraction of the local division of the loc
No. of Concession, Name

PHYSICAL CHARACTERISTICS	Unit	Mineral 48 RM	Tolerance
Nominal thickness	mm	48	#2
Length	m	1.00	±0.01
Width	m	0.625	±0.01
Density (rock wool panel + rubber panel + rock wool panel)	kg/m³	100 + 800 + 100	2.5%
Overall Superficial mass	kg/m²	10.4	2.5%
Colour		yellow/black	

ACOUSTIC CHARACTERISTICS	Standard	Unit	Mineral 48 RM
Wall composition - 100 mm thick			
A: Gypsum-board double layer - 12.5mm x2 fixed to an 50 mn	n metal structure		ABC
B: Mineral 48 RM, inside metal structure 50 mm			YNN
C: Gypsum-board double layer - 12.5mm x2 fixed on an 50 mm	n metal structure		
Transmission loss (Rw) ⁽¹⁾	EN ISO 10140	dB	55 (2) - 55 (3)
Wall composition - 160 mm thick			
A: Gypsum-board double layer + 12.5mm x2 fixed to an 50 mr	m metal structure	A	B C
B: Mineral 48 RM, inside of first metal structure 50 mm		4	isal Yi
C: Gypsum-board double layer + 12.5mm x2 fixed to an 50 mm	n metal structure		
Transmission loss (Rw) (1)	EN ISO 10140	dB	60 ⁽²⁾ - 64 ⁽³⁾
Wall composition - 160 mm thick		-	8888
A: Gypsum-board double layer + 12.5mm x2 fixed to an 50 mr	n metal structure	A	
8: Mineral 48 RM, inside to both metal structure 50 mm		4	188-881
C: Gypsum-board double layer + 12.5mm x2 fixed to an 50 mm	n metal structure		
Transmission loss (Rw) (1)	EN ISO 10140	dB	65 (z) - 69 (3)
Wall composition = 125 mm thick			N R R
A: Gypsum-board double layer - 12.5mm x2 fixed to an 75 mn	n metal structure		A B C
B: Mineral 48 RM, inside metal structure 75 mm			YNN Y
C: Gypsum-board double layer - 12.5mm x2 fixed on an 75 mm	n metal structure		
Transmission loss (Rw) ⁽¹⁾	EN ISO 10140	d8	58 ⁽²⁾ - 59 ⁽³⁾
TECHNICAL CHARACTERISTICS	Standard	Unit	Mineral 48 RM
Thermal conductivity coefficient (λ)	EN 12667	W/mX	0.040
Fire grade	EN 13501-1		F

11 Values obtained in Isolgors ma accustic laboratory .	111 Gypsum board density 700 kg/m*	* Gypsum board density 850 kg/m*

Mineral 33B

Acoustic and thermal walls and ceilings insulation

Product description and Technical Specification

Airborne noise insulation in 33 mm-thick pre-assembled panels made of: a 20 mmthick rock wool panel, density of 100 kg/m³ and a 12.5 mm-thick plasterboard. The panels dimensions are 1.20 m width x 2.00 m lenght.

- thermal and sound insulating
- long term durability and stability
- easy to install

PHYSICAL CHARACTERISTICS	Unit	Mineral 33B	Tolerance
Nominal thickness	mm	33	±1
Length	m	2,00	± 0.005
Width	- m	1,20	± 0.005
Overall Superficial mass	kg/m ²	11,5	± 5%
Colour		yellow / white	

ACOUSTIC CHARACTERISTICS	Norm	Unit	Mineral 33B
Wall composition 19.5 cm thick - certified			
A: coating made with: Mineral 33B + 12.5 mm plasterboard			(A) B
B: 12 cm hollow block wall (12/25/50) + 1.5 cm plaster on both	h sides		
Transmission loss (Rw)	EN 12354-1	d8	56 ^m
Wall composition 17.1 cm thick - certified			
A: coating made with: Mineral 338 + 12.5 mm plasterboard			ABC
B: 8 cm hollow block wall (8/25/50)			
C: coating made with: Mineral 338 + 12.5 mm plasterboard			
Transmission loss (Rw)	EN 12354-1	dB	54 (1)

TECHNICAL CHARACTERISTICS	Norm Unit	Mineral 33B	
Thermal resistance (R)	EN 12667 m² K/W	0.634 (2)	-
Fire grade	EN 13501-1	A2-s1-d0	


PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

19 Calculated value according to EN 12354-1

⁽²⁾ Calculated value with thermal conductivity coefficient by the individual component

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

Mineral 40RB

Acoustic and thermal walls and ceilings insulation

Product description and Technical Specification

Airborne noise insulation in 40 mm-thick pre-assembled panels made of a 8 mmthick SBR (Stirene Butadiene Rubber) rubber granules hot pressed with polyurethane binder, density of 800 kg/m³, a 20 mm-thick rock wool pane, density of 100 kg/m³ and a 12.5 mm-thick plasterboard slab. The panels dimensions are 1.20 m width x 2.00 m lenght.

- thermal and sound insulating
- long term durability and stability.
- · easy to install

PHYSICAL CHARACTERISTICS	Unit	Mineral 40RB	Tolerance
Nominal thickness	mm	40	:1
Length	m	2,00	± 0.005
Width	m	1,20	1 0.005
Overall Superficial mass	ig/m ²	18	± 5%
Colour	(A)	yellow / black / white	

ACOUSTIC CHARACTERISTICS	Norm	Unit	Mineral 40R8
Wall composition 20.5 cm thick - certified		12	
A: coating made with: Mineral 40RB + 12.5 mm plasterboard			AB
B: 12 cm hallow block wall (12/25/50)+ 1.5 cm plaster on both s	sides		
Transmission loss (Rw)	EN 12854-1	dB	57 (1)
Wall composition 18.5 cm thick - certified			
A: coating made with: Mineral 40RB + 12.5 mm plasterboard			
B: 8 cm hollow block wall (8/25/50)			ABC
C: coating made with: Mineral 40RB + 12.5 mm plasterboard			
Transmission loss (Rw)	EN 12354-1	d8	60 ⁽¹⁾

TECHNICAL CHARACTERISTICS	Norm	Unit	Mineral 40R8
Thermal resistance (R)	EN 12667 m	12 K/W	0.707 (2)
Fire grade	EN 18501-1		F

PACKING AND STORING

Each pallet is wrapped and protected with a polythene film. Although the wrapping is waterproof, inside storage is recommended to avoid possible wet storing

10 Calculated value according to EN 12354-1

⁽²⁾ Calculated value with thermal conductivity coefficient by the individual component

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Stywall - Stywall AD

Under wall strip

Product description and Technical Specification

STYWALL: Acoustic insulation in stripes 8 mm thick made of SBR (Stirene Butadiene Rubber) rubber granules hot pressed between two 50 g/m² non-woven, unstretched backing using an hureic adhesive. Density 700 kg/m³. Stripes dimensions: m 1 lenght, cm 10, 15, 20, 25, 33, 40 width.

STYWALL AD: Acoustic insulation in stripes 6 mm thick made of SBR (Stirene Butadiene Rubber) fibres and granules rubber hot pressed with a polyurethane binder to a 50 g/m² non-woven, unstretched backing. Density 750 kg/m³. Stripes dimensions: m 7.5 lenght, cm 10, 15, 20, 25, 33, 40 width.

- Structural junction underwall
- · Extremely easy to be installed
- High acoustic and vibration insulation

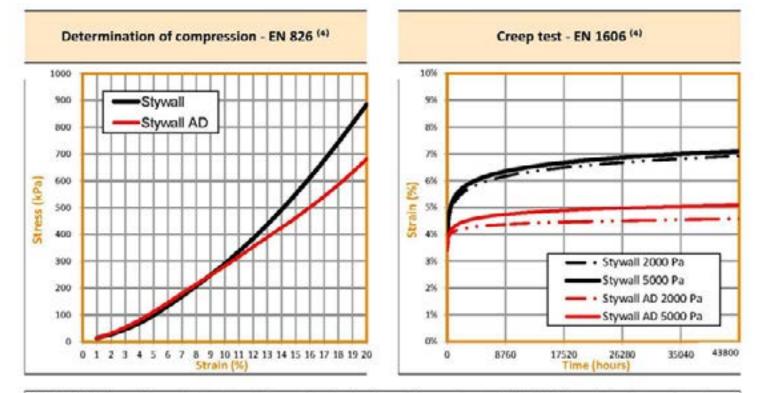
PHYSICAL CHARACTERISTICS	Standard	Unit	STYWALL	STYWALL AD	Tolerance
Nominal thickness	EN 12431	mm	8	6	10.5
Length		m	1,0	7,5	± 1%
Width		cm	10 - 15 - 20	- 25 - 33 - 40	10.5
Density		kg/m*	700	750	± 5%
Backing superficial mass		g/m²		50	-
Overall Superficial mass		kg/m²	7,0	4,5	1.5%
Colour			b	lack	

ACOUSTIC CHARACTERISTICS	Standard Unit	STYWALL	STYWALL AD	Tolerance
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1 MN/m*	55	96	12
Natural frequency (fn)	Hz	84	111	

TECHNICAL CHARACTERISTICS	Standard	Unit	STYWALL	STYWALL AD	Tolerance
Static Modulus of Elasticity (Es) - strain 10%	EN 826	N/mm ³	2,9	2,82	
Compression at strain 10%	EN 826	kPa	290	282	± 5%
Compression strain (dL - 250 Pa)	EN 12431	mm	8,0	6,8	
Compression strain (dF - 2000 Pa)	EN 12431	mm	7,7	6,7	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	নেলন	7,5	6,6	
Hardness	DIN 53505	Shore A	-	50	
Thermal conductivity coefficient (λ)	EN 12667	W/mK	0,109	0,12	
Fire grade	2000/147/CE - DIN 4	102	F	B2	

PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing


⁽²⁾ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Stywall - Stywall AD

Under wall strip

⁽⁴⁾ The initial thickness of the product during testing is equal to the value of pag. 1 "Compression strain (dL - 250 Pa)"; use this value to evaluate the crush rate of the material according to the specified norm

Stywall S3

Under wall strip

Product description and Technical Specification

Acoustic insulation in stripes 3 mm thick made of SBR (Stirene Butadiene Rubber) fibres and granules rubber hot pressed using an hureic binder. Density 730 kg/m³. Stripes dimensions: m 20 lenght, cm ... width. Recyclable product obtained with 95% recycled material.

- Structural junction underwall
- Extremely easy to be installed
- High acoustic and vibration insulation

PHYSICAL CHARACTERISTICS	Standard Unit	Stywall S3	Tolerance
Nominal thickness	EN 12431 mm	3	±0.5
Length	m	20	± 1%
Width	mm	45-50-70-100-120-125 145-150-175-180-200 225-250-300-330-400	12
Density	kg/m³	730	± 5%
Overall Superficial mass	kg/m²	2,19	1.5%
Colour		black	

ACOUSTIC CHARACTERISTICS	Standard Unit	Stywall S3	Tolerance
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1 MN/m ³	77	22
Natural frequency (fn)	Hz	99	

TECHNICAL CHARACTERISTICS	Standard Unit	Stywall S3	Tolerance
Static Modulus of Elasticity (Es) - strain 10%	EN 826 N/mm²	1,02	
Compression at strain 10%	EN 826 kPa	102	± 5%
Compression strain (dL - 250 Pa)	EN 12431 mm	2,8	
Compression strain (dF - 2000 Pa)	EN 12431 mm	2,7	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431 mm	2,6	
Hardness	DIN 53505 Shore A	40	
Thermal conductivity coefficient (λ)	EN 12667	0,12	
Fire grade	DIN 4302	B2	

PACKING AND STORING

Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

⁽²⁾ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Stywall S4 - S6

TECHNICAL DATA SHEET

Under wall strip

Product description and Technical Specification

Acoustic insulation in stripes mm thick made of SBR (Stirene Butadiene Rubber) fibres and granules rubber hot pressed using an hureic binder. Density 730 kg/m³. Stripes dimensions: m 10 lenght, cm ... width. Recyclable product obtained with 95% recycled material.

- Structural junction underwall
- Extremely easy to be installed
- High acoustic and vibration insulation

PHYSICAL CHARACTERISTICS	Standard Unit	Stywall S4	Stywall S6	Tolerance
Nominal thickness	EN 12431 mm	4	6	±0.5
Length	m	1	0	± 1%
Width	17.17		-145-150-175- 25-250-300	*2
Density	kg/m³	7	30	± 5%
Overall Superficial mass	kg/m²	2,92	4,38	± 5%
Colour		bl	ack	

ACOUSTIC CHARACTERISTICS	Standard Unit	Stywall S4	Stywall S6	Tolerance
Dynamic stiffness for dry application ⁽²⁾	EN 29052/1 MN/m*	70	62	± 2
Natural frequency (fn)	Hz	94	89	

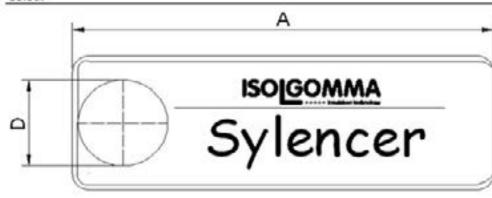
TECHNICAL CHARACTERISTICS	Standard	Unit	Stywall S4	Stywall 56	Tolerance
Static Modulus of Elasticity (Es) - strain 10%	EN 826	N/mm*	0,98	1,33	
Compression at strain 10%	EN 825	kPa	98	133	±.5%
Compression strain (dL - 250 Pa)	EN 12431	mm	4,0	6,0	
Compression strain (dF - 2000 Pa)	EN 12431	mm	3,9	5,8	
Compression strain (dB - 50000 → 2000 Pa)	EN 12431	mm	3,9	5,8	
Hardness	DIN 53505	Shore A	4	0	
Thermal conductivity coefficient (λ)	EN 12667		0,	12	
Fire grade	DIN 4102		8	2	

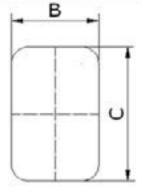
PACKING AND STORING

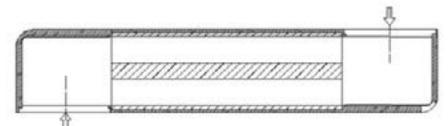
Each pallet is wrapped and protected with waterproof polythene film. Inside storage is recommended to avoid possible wet storing

⁽³⁾ Measurement executed in deviation from norm EN 29052-1, without applying plaster on the test piece

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.


Ventilation hole


Product description and Technical Specification


Acoustic insulation for vent holes, to be installed on the facade walls, rectangular shaped, length 75 cm, width 15,5 cm, height 25 cm; it is made of high density expanded polypropylene (EEP), while the inner Cartridge is made of polyester fiber with a net free section of over 100 cm².

- high acoustic insulation
- easy to install
- durable material

PHYSICAL CHARACTERISTICS	Unit	Sylencer	
Lenght (A)	mm	750	
Width (B)	mm	155	
Height (C)	mm	250	
Hole diameter (D)	mm	160	
Colour		white	

0				
ACOUSTIC CHARACTERISTICS	Norm	Unit	Sylencer	
Acoustic insulation of Sylencer (Dn,e,w)	EN ISO 20140	d8	52	2

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.

Sylencer

Profyle

Edging stripes for floating floors

PROFYLE

Product description and Technical Specification

Edging stripes for floors screed made of polyethylene, grey colour, thickness mm with adhesive on the two external sides. The dimensions are: base cm, height cm, density kg/m³.

PHYSICAL CHARACTERISTICS	Unit	5/10	10/10	10/15	10/20	5/30	Tolerance
Nominal thickness	mm.		Sector Sector	6		6 - 2 G	± 1%
Length (L)	cm.			150		· · · · ·	±1%
Height (h)	CITT.	10	10	15	20	30	10.5
Width (b)	cm	5		10		5	10.5
Density	kg/m ⁹	23,5		31	1,5		±1.5

PROFYLE CORNER

Product description and Technical Specification

Acoustic Insulation Corners made of Polyethylene grey colour of 6 mm thickness, preshaped at 90° and 270° with adhesive on the two external sides. Base 5 cm, height 15 cm, lenght 10 cm; density 22+25 kg/m³

PHYSICAL CHARACTERISTICS	Unit	90* 270*	Tolerance	Ro
Nominal thickness	mm	6	1.1%	
Length (L)	cm.	10	1.1%	h
Height (h)	cm.	15	1.0.5	
Width (b)	cm	5	10.5	h A
Density	kg/m*	23,5	±15	

PROFYLE FLAT

Product description and Technical Specification

Acoustic Insulation strip available in rolls made of 6 mm thickness made of polyethylene grey colour, 22-25 kg/m³ density. It is flat with adhesive, pre-cut on the corner line in order to facilitate the strip bending. Base 5 cm, height 15 cm

PHYSICAL CHARACTERISTICS	Unit	FLAT	Tolerance	
Nominal thickness	mm	6	11%	1
Length (L)	m	5	±1% b	-
Height (h)	em .	15	10.5	
Width (b)	cm .	5	10.5	
Density	kg/m³	23,5	115	

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

155

Profyle Flat 1 - Profyle Flat 5

Strip for skinting board

Product description and Technical Specification

Acoustic insulation strip for under skirting board made of polyethylene adhesive roll thickness of 1 mm, width 10 mm and length 20 m

easy to apply

			-		
-1	1	<			1
		1	2	-	

PHYSICAL CHARACTERISTICS	Unit	FLAT 1	Tolerance
Nominal thickness	mm	1	± 5%
Width	mm	10	± 5%
Length	m	20	2.5%
Density	kg/m*	23,5	±1.5
Colour		grey	

Strip for under flooring

Product description and Technical Specification

Acoustic insulating bands available in rolls made of polyethylene, white colour, thickness of 5 mm, with an adhesive band for easy application. Height 50 mm, density 22+25 kg/m³.

- for under ceramic tiles
- for under parquet

PHYSICAL CHARACTERISTICS	Unit	FLAT 5	Tolerance
Nominal thickness	mm	5	± 5%
Width		50	± 5%
Length	m	50	t 5%
Density	kg/m*	23,5	±1.5
Colour		white	

Stik - Stik WP

TECHNICAL DATA SHEET

Adhesive tape

Stik

Product description and Technical Specification

Adhesive jointing tape made of non-woven anti-stretching polypropelene fabric 70 g/m². Supplied in rolls 6-10 cm x 50-100 m.

PHYSICAL CHARACTERISTICS	Unit	60	100	Tolerance
Width	mm	60	100	± 1%
Length	m	50-	± 1%	
Weigth	g/m ²	70		± 10%
Colour		bl	ack	

Stik WP

Product description and Technical Specification

Adhesive jointing tape made of waterproof non-woven anti-stretching. Supplied in rolls 6-10 cm x 25 m.

PHYSICAL CHARACTERISTICS	Unit	60	100	Tolerance
Width	1700 I	60	100	# 1%
Length	m	2	\$ 1%	
Weigth	g/m ^z	70		£ 10%
Colour	54 P	gr	ey	

TECHNICAL CHARACTERISTICS	Norm	Unit	60	100	Tolerance
Traction longitudinal resistance	EN 12311	N/mm	> 160		2.5%
Longitudinal elongation	EN 12311	EN 12311		0.65	
Traction transversal resistance	EN 12311	N/mm	>	90	1.5%
Transversal elongation	EN 12311	EN 12311		.7	2.5%

INSTALLATION INSTRUCTIONS

Remove the protective film and seal the joints of the rolls, wall panels and Profyle

The suggestions and the technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserves the right to make modifications to or update the above data without prior notice. This document is a ISOLGOMMA property. All rights are reserved

Vibration insulation

Product description and Technical Specification

Anti-vibration material supplied in panels, thickness 10^(*)/20/30/40/50 mm, produced using fibres and granules of SBR rubber (Stirene Butadiene Rubber) and granules of EPDM rubber (Ethylene Propylene Diene Monomer), selected and compacted using a polyurethane glue in a hot process. A non-woven, non-stretch waperproof synthetic membrane is applied on one side of panel, for added protection; density 500 kg/m³. Panels dimensions are m 1 lenght, m 1 width.

High performance in reduced thickness

- Easy to lay
- Durable material

Area of application	Compression load	Deflection	Γ.	Are	a of app	plicatio	on
			- 1				ME950
Static range of use (static loads)	0.05 N/mm²	10%					ME800
operating load range	0.05 + 0.35 N/mm ²	10% + 30%					ME650
(static plus dynamic loads)			8	1.20	8	35	ME500
load peaks (short term, infrequent loads)	1.00 N/mm ²	50%	2	ri	۰ I ۱	o ipedific los	ad (N/mm²)

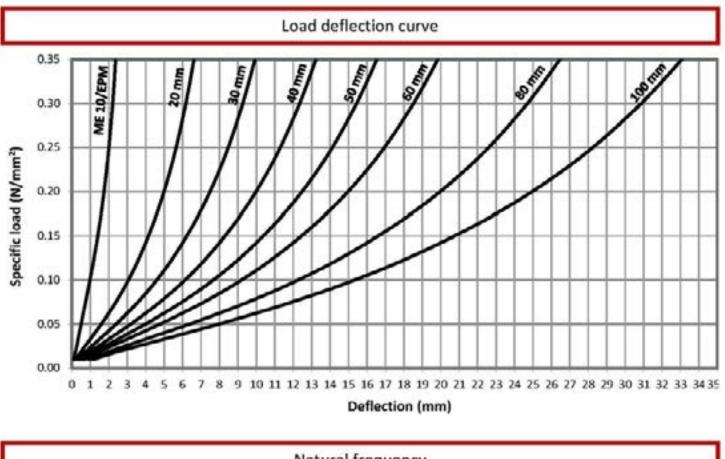
PHYSICAL CHARACTERISTICS	Norm Unit	ME 10/EPM	ME 500	Tolerance
Nominal thickness	mm.	10	20-30-40-50	±1
Length	m			±1
Width	m	1.	11	
Density	kg/m³	700	500	t 5%
Backing superficial mass	8/m³	1		
Colour		grey/red	black/red	

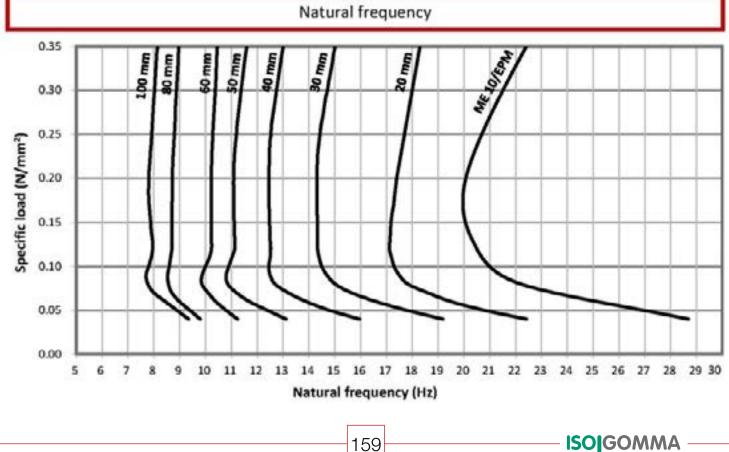
TECHNICAL CHARACTERISTICS	Norm	Unit	ME 10/EPM	ME 500	Tolerance
Stress at strain 10%	UNI 11059	N/mm ^a	0.100	0.063	±10%
Static Modulus of Elasticity (Es) - strain 10%	UNI 11059	N/mm ²	1.020	0.623	± 10%
Dynamic Modulus of Elasticity (Ed) - strain 10%	UNI 11059	N/mm ¹	1.850	1.750	± 10%
Static Shear Modulus (Gs)	ISO 1827	N/mm ²	-	0.164	± 10%
Loss factor (ŋ)	UNI 11059		0.134	0.143	± 0.009

PHYSICAL AND CHEMICAL PROPERTIES	Norm	ME 10/EPM ME 500	Tolerance
Temperature range of use		-20 °C / +110 °C	±.5%
Inflammability	DIN 4102	82	

⁽⁺⁾ The product ME10/EPM is composed completely of EPDM rubber granules; density 700 kg/m³, 10 mm thickness.

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved


Megamat ME 500



Megamat ME 500

TECHNICAL DATA SHEET

Vibration insulation

Vibration insulation

Product description and Technical Specification

Anti-vibration material supplied in panels, thickness 10/20/30/40/50 mm, produced using fibres and granules of SBR rubber (Stirene Butadiene Rubber) and granules of EPDM rubber (Ethylene Propylene Diene Monomer), selected and compacted using a polyurethane glue in a hot process. A non-woven, non-stretch synthetic waterproof membrane is applied on one side of panel, for added protection; density 650 kg/m³. Panels dimensions are m 1 lenght, m 1 width.

High performance in reduced thickness

- Easy to lay
- Durable material

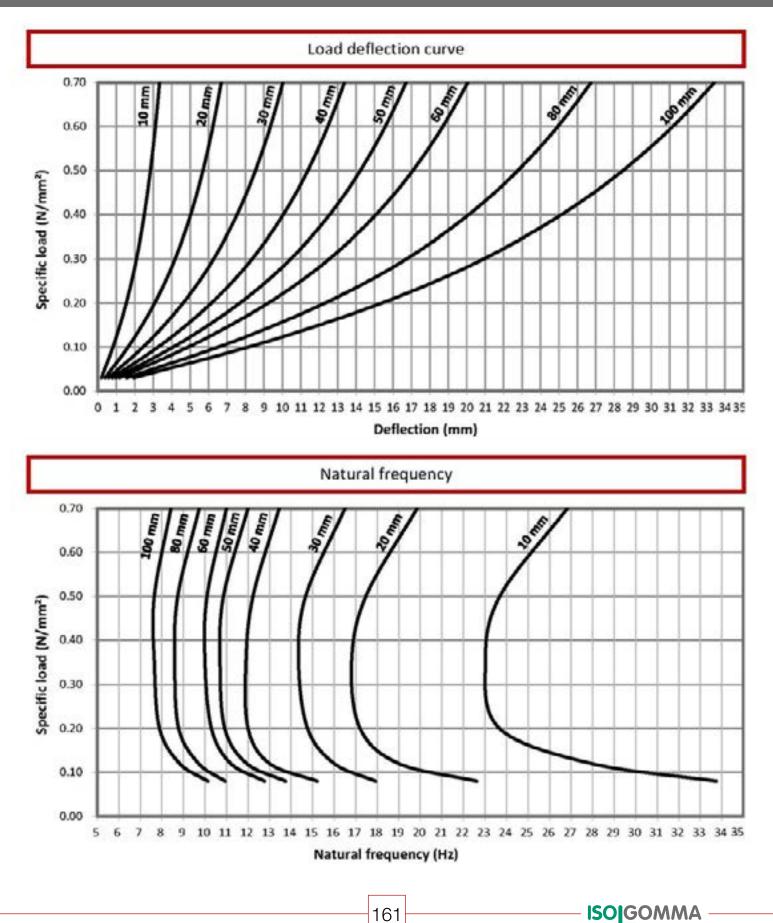
Area of application	Compression load	Deflection		Area of application			on
File of upplication	compression roug	D UTER OF	- 1				ME950
Static range of use (static loads)	0.07 N/mm ²	5%					ME800
operating load range	0.07 + 0.7 N/mm ²	5% + 30%					ME650
(static plus dynamic loads)	0.07 + 0.7 N/mm	376 + 3076					ME500
load peaks (short term, infrequent loads)	2.00 N/mm ²	50%	2.00	1.20	0.70	Se di pedific lo	ad (N/mm*)

PHYSICAL CHARACTERISTICS	Norm Unit	ME 650	Tolerance
Nominal thickness	interior.	10-20-30-40-50	±1
Length	m	1.00	11
Width	m	1.00	11
Density	kg/m*	650	± 5%
Backing superficial mass	e/m²	110	
Colour		black/red	

TECHNICAL CHARACTERISTICS	Norm Unit	ME 650	Tolerance
Stress at strain 10%	UNI 11059 N/mm ³	0.120	± 10%
Static Modulus of Elasticity (Es) - strain 10%	UNI 11059 N/mm ³	1.23	± 10%
Dynamic Modulus of Elasticity (Ed) - strain 10%	UNI 11059 N/mm ³	3.60	± 10%
Static Shear Modulus (Gs)	150 1827 N/mm ^a		± 10%
Loss factor (ŋ)	UNI 11059	0.140	± 0.008

PHYSICAL AND CHEMICAL PROPERTIES	Norm	ME 650	Tolerance
Temperature range of use		-20 °C / +110 °C	± 5%
Inflammability	DIN 4102	B2	

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.


Megamat ME 650

Megamat ME 650

TECHNICAL DATA SHEET

Vibration insulation

Vibration insulation

Product description and Technical Specification

Anti-vibration material supplied in panels, thickness 10/20/30/40/50 mm, produced using fibres and granules of SBR rubber (Stirene Butadiene Rubber) and granules of EPDM rubber (Ethylene Propylene Diene Monomer), selected and compacted using a polyurethane glue in a hot process. A non-woven, non-stretch synthetic waterproof membrane is applied on one side of panel, for added protection; density 800 kg/m3. Panels dimensions are m 1 lenght, m 1 width.

High performance in reduced thickness

- Easy to lay
- Durable material

Area of application	Compression load	Deflection		Area of application			n
			- 1				ME950
Static range of use (static loads)	0.12 N/mm²	5%					ME800
operating load range	0.12 + 1.2 N/mm ²	5% + 30%					ME650
(static plus dynamic loads)		510 - 5510					ME500
load peaks (short term, infrequent loods)	3.00 N/mm ²	50%	2.00	1.20	0.70	SE'O	ad (N/mm²)

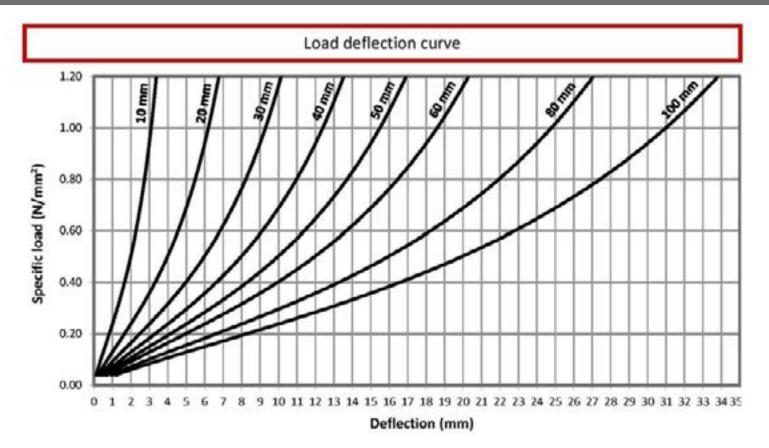
PHYSICAL CHARACTERISTICS	Norm Unit	ME 800	Tolerance
Nominal thickness	mm	10-20-30-40-50	11
Length	m	1.00	11
Width		1.00	2.1
Density	kg/m*	800	1.5%
Backing superficial mass	\$/m²	110	-
Colour		black/red	

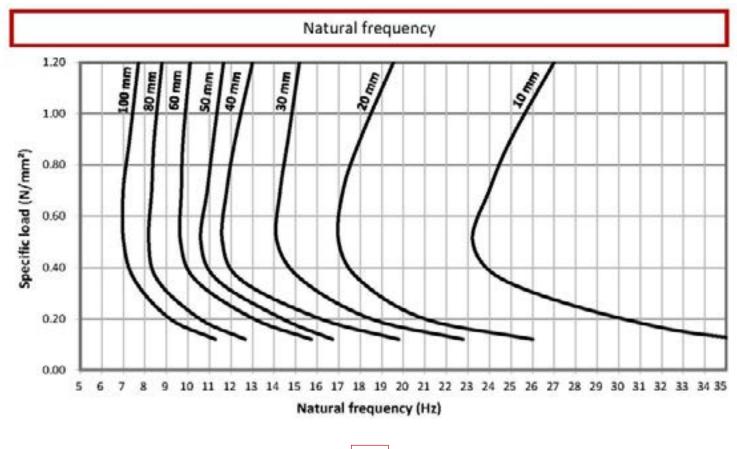
TECHNICAL CHARACTERISTICS	Norm	Unit	ME 800	Tolerance
Stress at strain 10%	UNI 11059	N/mm ⁹	0.240	± 10%
Static Modulus of Elasticity (Es) - strain 10%	UNI 11059	N/mm ³	2.40	± 10%
Dynamic Modulus of Elasticity (Ed) - strain 10%	UNI 11059	N/mm ³	7.95	± 10%
Static Shear Modulus (Gs)	ISO 1827	N/mm ³	0.34	± 10%
Loss factor (ŋ)	UNI 11059	100	0.136	± 0.018

PHYSICAL AND CHEMICAL PROPERTIES	Norm	ME 800	Tolerance
Temperature range of use		-20 °C / +110 °C	£ 5%
Inflammability	DIN 4102	82	

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved

Megamat ME 800




Megamat ME 800

ISOGOMMA

TECHNICAL DATA SHEET

Vibration insulation

163

Vibration insulation

Product description and Technical Specification

Anti-vibration material supplied in panels, thickness 10/20/30/40/50 mm, produced using fibres and granules of SBR rubber (Stirene Butadiene Rubber) and granules of EPDM rubber (Ethylene Propylene Diene Monomer), selected and compacted using a polyurethane glue in a hot process. A non-woven, non-stretch synthetic waterproof membrane is applied on one side of panel, for added protection; density 950 kg/m⁸. Panels dimensions are m 1 lenght, m 1 width.

High performance in reduced thickness

- Easy to lay
- Durable material

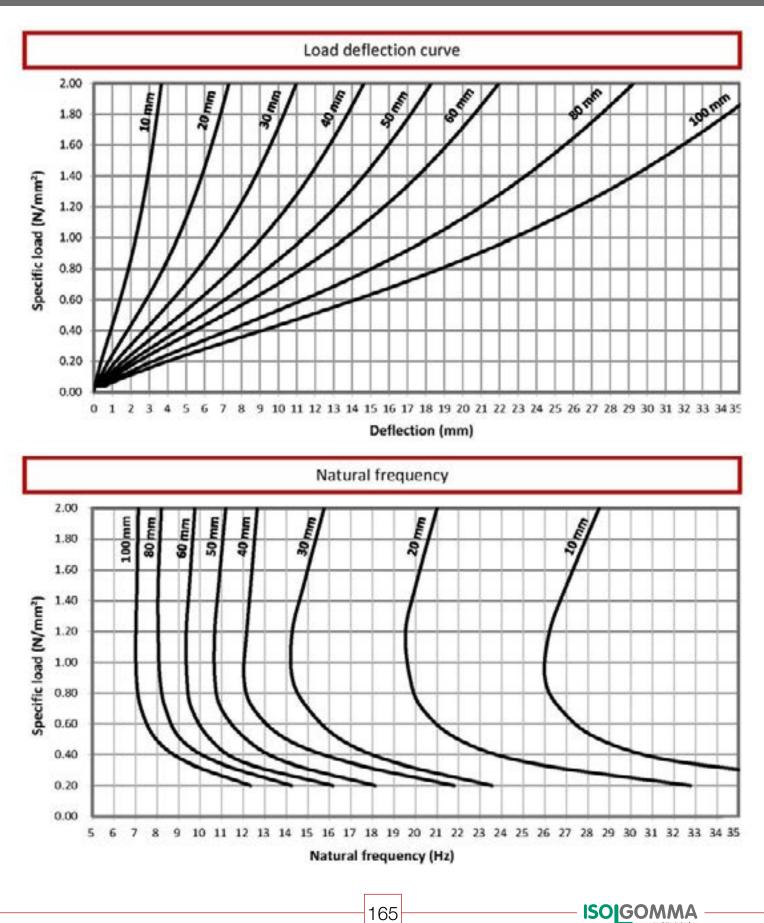
Area of application	Compression load	Deflection		Area of application			on
		Dencemen	- 1				ME950
Static range of use (static loads)	0.25 N/mm ²	5%					ME800
operating load range	0.25 + 1.5 N/mm ²	5% + 25%					ME650
(static plus dynamic loads)	0.25 + 1.5 Nymm	576+2576				10	ME500
load peaks (short term, infrequent loads)	4.00 N/mm ²	50%	2.00	1.20	0.70	SPecific Io	ad (N/mm*)

PHYSICAL CHARACTERISTICS	Norm Unit	ME 950	Tolerance
Nominal thickness	mm	10-20-30-40-50	11
Length	m	1.00	11
Width	m	1.00	11
Density	kg/m*	950	1.5%
Backing superficial mass	\$/m²	110	
Colour		black/red	

TECHNICAL CHARACTERISTICS	Norm Unit	ME 950	Tolerance
Stress at strain 10%	UNI 11059 N/mm ³	0.440	± 10%
Static Modulus of Elasticity (Es) - strain 10%	UNI 11059 N/mm ²	4.45	± 10%
Dynamic Modulus of Elasticity (Ed) - strain 10%	UNI 11059 N/mm ³	14.30	± 10%
Static Shear Modulus (Gs)	150 1827 N/mm ³		± 10%
Loss factor (ŋ)	UNI 11059	0.137	± 0.016

PHYSICAL AND CHEMICAL PROPERTIES	Norm	ME 950		Tolerance
Temperature range of use		-20 °C	/ +110 *C	± 5%
Inflammability	DIN 4102	B2		

The suggestions and technical information given above represent our knowledge regarding the properties and the product's uses. ISOLGOMMA reserve the right to modify or update this data without prior notice. This document is the property of ISOLGOMMA and all rights are therefore reserved.


Megamat ME 950

Megamat ME 950

TECHNICAL DATA SHEET

Vibration insulation

INSTALLATION INSTRUCTIONS

The methodologies of laying reported here are of general purpose. For more details, consult the ISOLGOMMA installation manual.

Floating screed

Roll - Grei - Upgrei

Insulate the concave corners with the "Profile" strip by cutting it as shown in the drawing.

Melt the screed

Lay down the insulation layer on the floor surface with the rubber granules turned on the bottom floor side.

Lay down the final floor covering (ceramic or When the flooring application is completed, wood).

Seal the roll jointing borders by the adhesive flap available on the roll border. To do it properly follow the dotted end continues lines indication.

cut the exceeding part of the edging strips.

Syl - Sylpro

insulate the concave corners with the "Profile" strip by outting it as shown in the drawing.

Lay down the insulation layer. Seal the roll border by using the adhesive stik tape.

Apply polyethylene layer with as protection film.

Melt the screed

wood).

Lay down the final floor covering (ceramic or When the flooring application is completed, cut the exceeding part of the edging strips.

Under flooring

Sylcer

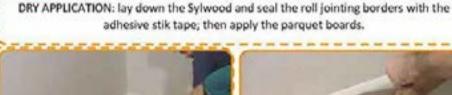
Fix the Profyle Flat 5 around the bottom of the surrounding walls

Spread a thin layer of adhesive onto the floor, then glue the Sylcer

Tape all the Sylcer jointing borders with the Stik tape

Spread the bi-component concrete glue, layer the ceramic tiles over the adhesive glue.

Apply the grouting glue.



When the grouting starts to solidify the ceramic clean can be done.

Sylwood

Apply the Profyle Flat 5 all along the room perimeter.

GLUE APPLICATION: apply the mat glue, then lay down the Sylwood rolls by jointing the borders with the adhesive stik tape. Glue the parquet boards over the Sylwood mat with the indicated glue.

When the flooring application is completed, cut the

Coated ceiling

Mustwall 33B - Rewall 40 - Rewall 33B - Natur 33B - Mineral 33B - Mineral 40RB

COATED CEILING

Glue the adhesive strip Stywall S3A to the metal studs and fix them along the upper perimeter of the room

Calculate the distance of the metal studs of 50 cm and fix the acoustic bracket every 80 cm

Drill the ceiling e fix the acoustic bracket

Fix the metal stud to the acoustic bracket

Lean the Rewall panel to the metal frame

Fix the Rewall panel to the metal frame with 55 mm screws every 15 cm

Fill the possible gaps between panels

Apply the plastic mesh tape in the gypsum boards jointing lines and grouting

Suspended ceiling

Trywall - Fybro - Natur - Mineral - Mineral 48RM

Glue the adhesive strip Stywall S3A to the metal studs and fix them along the perimeter of the room at a fixed distance from the

Mark and fix the acoustic hangers

SUSPENDED CEILING

Fix to hangers the metal studs of primary grid

Fix the metal studs of primary grid along the perimeter channel

Insert the metal stud of secondary grid in the perimeter channel

Fix the metal stud of secondary grid to the primary grid with the appropriate connector

Place on top of the primary and secondary grid the insulation panels

Lean the gypsum board to the metal frame

Fix the gypsum board by screwing

Apply the plastic mesh tape in the gypsum boards jointing lines

Grouting

Double wall

Mustwall - Biwall - Mineral 50R

Lay the under wall strip in the dry floor before to build the wall.

with mortar on both vertical and horizontal joints.

Build up the wall by caring to joint the blocks Apply in the first wall a layer of row mortar of about 1 cm thickness

Apply the glue on the panel by spreading it Apply the panel on the wall by forcing with on dots.

homogeneous pressure.

Place the panel on the right wall position and produce 5 holes per panel with the driller (one in the centre and one in the four corners)

Apply the five plastic nails with the hammer.

NAILS APPLICATION

When all panels are fixed seal the panel joints with the "Stik" tape.

Build up the second wall by caring to joint the blocks with mortar on both vertical and horizontal joints.

Realize the final plastering

Double wall

Fybro - Natur - Mineral

Lay the under wall strip in the dry floor and build the wall.

Build up the wall by caring to joint the blocks with mortar on both vertical and horizontal joints.

DOUBLE WALL

of about 1 cm thickness.

Apply in the first wall a layer of row mortar Build the second wall with the same process of the first one and insert the panel in the ____cavity____

Realize the final plastering.

......

Plasterboard wall

Trywall - Fybro - Natur - Mineral - Mineral 48RM

Glue on the metal studs the adhesive strip type Stywall S3-A

Fix the metal studs on the floor, wall and ceilings.

Fix the vertical metal studs on the ceiling and bottom guides by screwing

Fix the gypsum boards on one side

Insert the Trywall panel

Complete the insulation application

Cover the insulation layer by screwing the second gypsum boards on the metal studs

Apply the plastic mesh tape in the gypsum boards jointing lines

Grouting

OPZION - DOUBLE STRUCTURE - Built up the second metal studs structure.

OPZION - STYWALL STRIPS: Apply the adhesive Stywall strips on the boards side of vertical metal studs

OPZION - DOUBLE GYPSUM BOARD - To improve structurally the dry wall apply a second board

Coated wall

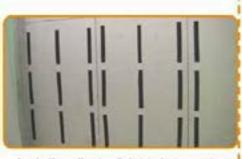
Mustwall 33B - Rewall 40 - Rewall 33B- Natur 33B - Mineral 33B - Mineral 40RB

COATED WALL

Lay the under wall strip

on dots.

Apply the glue on the panel by spreading it Apply the panel on the wall by forcing with homogeneous pressure.



On each Rewall panel mark the holes points placed as per the drawing here shown

NAILS APPLICATION

Proceed drilling the halls by a 10 mm driller and apply the nails

Apply the adhesive Syl strip between two nails

Fix the second gypsum board by gluing dots or screwing it on centre line and on the side borders with double thread screw. Offset

Apply the plastic mesh tape in the gypsum boards jointing lines

Grouting

Ventilation hole - Under wall

Sylencer

Start to built the wall

Lay on mortar the Sylencer

Build the wall around the Sylencer and plaster onto the product with a plastic mesh

Cut or remove the cap and insert the grid in the hole of the Sylencer

Stywall - Stywall AD

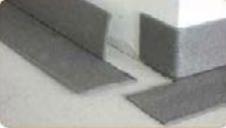
Lay the under wall strip

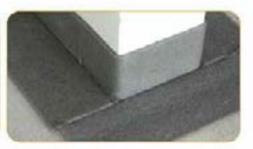
Over the Stywall lay down a plaster bed in order to start to built up the wall

Accessories

Profyle

Clean the applying surfaces from dirty and sharp parts


Remove the protection film


Glue the strip on both floor and wall surfaces by the external profile strip surfaces

strip by cutting it as shown in the drawing.

Insulate the acute corners with the "Profile" Insulate the obtuse corners with the "Profile" strip by cutting it as shown in the drawing.

Apply the Profyle all along the walls room perimeter, as shown in the drawing

Stik

Remove the protective film and seal the joints of the rolls, wall panels and Profyle

Accessories

Profyle Flat 1

Remove the protective film and glue the strip along the perimeter Apply ceramic or wood baseboard to the wall above the Profyle Flat of the room

Profyle Flat 5

Fix the Profyle Flat 5 around the bottom of the surrounding walls When the flooring application is completed, cut the exceeding part

When the flooring application is completed, cut the exceeding part of the edging strips.

Building insulation

Megamat

Build the containment foundation pit, taking care that the surfaces of the base and sides are clean and free of bumps.

Lay the Megamat panels taking care of placing them without leaving gaps or cavities along the edges of the joints.

Seal the horizontal joints carefully with the Stik tape.

Glue the panels on the sides of the trench by smearing glue on the entire surface or distributed by spots, install the panels side by side without leaving gaps or cavities along the edges of the joints.

Seal vertical joints carefully with the Stik tape.

Build the concrete foundation in the pit directly on the Megamat layer.

Machinary insulation

Megamat

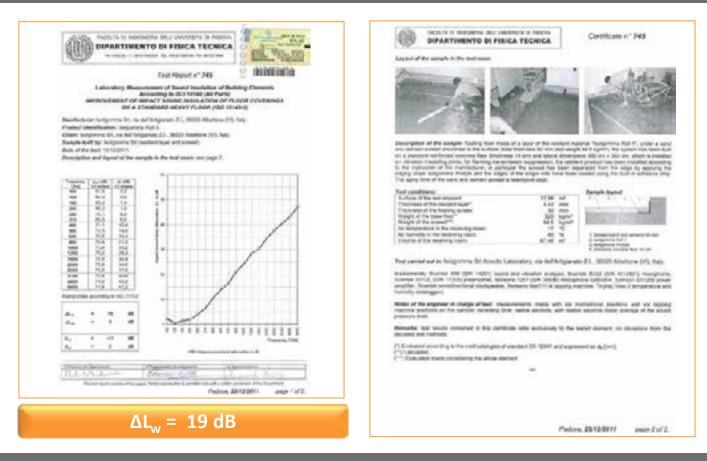
Bearings

Place the Megamat plates or strips dry and place the machine on them.

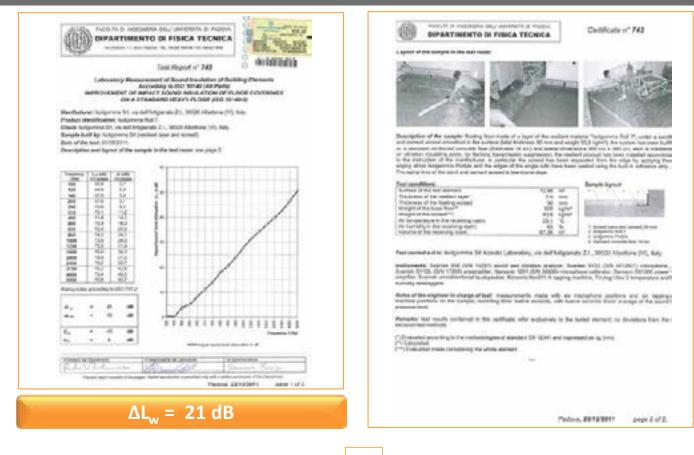
Seal the joints carafully using Stik adhesive tape

Glue the panel on the vertical walls of the foundation and seal the joints of panel with Stik tape

Place the steel mesh to prepare the reinforced concrete base


Build the concrete base and place the machine on the concrete base

LABORATORY TESTS

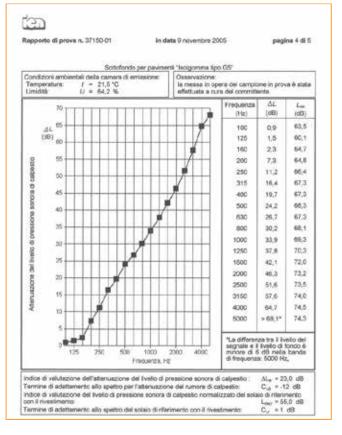


Roll 5

Roll 7

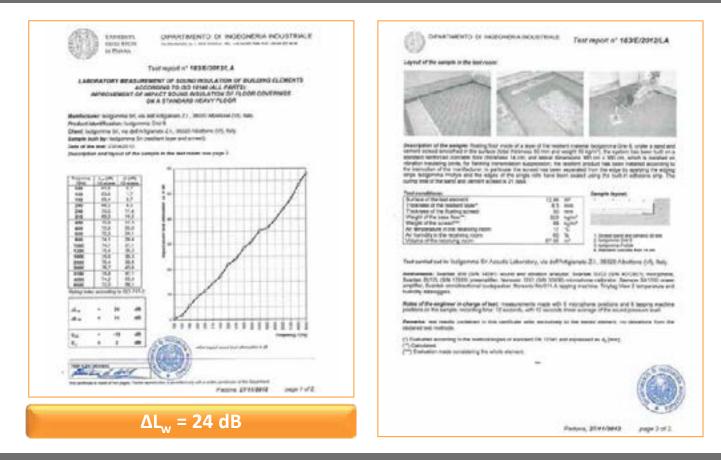
Impact sound reduction UNI EN ISO 140/8 - UNI EN 10140

Roll 10



Grei 5

Γ

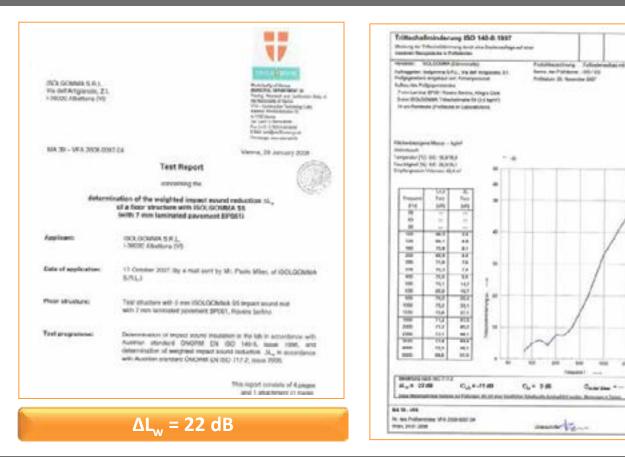

540	Nacionale	Telefox (~00-11) (4:83-04
	RAPPORTO DI PRO	 XVA
N. 37150-01	costituito-di a. 5 pegine	rilanciate in data 5 novembre 2001
a bolgonna an Via o	lelfArligienelo, Z.I 30020 A	behave (vil)
conforme alla richiaeta	 ASSESS(just IEN) 	In data 15 Ligito 2009
Tipe di prova	: misura in laboratorio del live	de di rumore di calpesio normalizzato
Campione in prova	i solulardo per perimenti "le	wipomme (po 50"
Data di ricovimente in la	dhute : 6 settembre 2005	
Deta di esecuzione deta	preva i 30-settembre 2005	
I risklid lipsted out prouting spectrum Copy subsequer an	deservation of Advances and Advances of a	ad exempler locatili a dia produce di ma I mani ana falo ana in facementi
 Not. estimate a print on the Real + Solis Manues (1998), 5 metacores for interaction official Endocrinosis. Resident (Transform of results & alternative (Transform of results & alternative) 	mile reactations and critic it reacts the social reactation and the second seco	eriki nor-parete Angenet Ar (J.F.A. O ugunt, 10 Refetti nor-parete Angenet Ar (J.F.A. O ugunt, 10 I septe 101, a 201, in developing trademic er private Tableti & Nationage Trademic Catano Refetting Ark Angeletics contacts ARTER & T. Nation & 100 at 1 a 1 a 400 at 10 K. S. Nation and 100 at 1 a 100 at 100 at 100 between the Statemic part of 3
St formering.		1 Responses to the
Valla Kana		and the
Charles in an		(Daulti faalarerei)

ISOGOMMA

Grei 8

Upgrei 8

	Schemen Harris (Lander) Schemen Harris (Lander) VUX VIX BEDREET Build Schemen Harris (Lander) VUX VIX BEDREET Build Schemen Harris (Lander) Cohemen Harris (Lander) Build Schemen Harris (Lander) BERDEETER Schemen Harris (Lander) BERDEETER <t< th=""><th>CSTC _</th><th></th><th>IONS RESEARCH IN</th><th></th><th></th></t<>	CSTC _		IONS RESEARCH IN		
Automatical of account of a	Automatical of a constraint Initial constraint Initial constraint Automatical of a constraint Initial constraint Initial constraint Biglio Constraint Statistical of constraint Initial constraint Biglio Constraint Sta	date of a 10 for the set has	 Paradaptic Loss 	Tex (1991)	iet E	10,000
Automatication of a conceptual in the second in the sec	A colonarization of a colonarization Bit is in term We have segue: bit is the colonarization of the colonarizat	ALC: M REPORT	1		1900.00	with the series of
Signature Signature Signature	In a distance of the segment of the second secon	commentation of earlier pr	net i	10101-0010-001		
A Number A Number Text and the Address of the Address	A Read No. A Read Tell Science (Control of the second region and second region a	14, A) 34(3)	Fishginstin 21			
	And the first and the strategy and the s	Realists.		Annual Part		
The Decision of the Josephin Research of and and and and and and the Charles of the Unit of the Decision	Processing of the contexts Support the contexts Support of the contexts <th></th> <th></th> <th></th> <th></th> <th></th>					
The second second is the function of a strategic levels of the functions. The statebast is the strategic levels of the function of the strategic levels of the strategic level		Reprint 1 Reference: The Direction of M. Annual S. Annual Conf. Status	Basement of a	and reaction a barrier and	r al et betreg timete Tel betreg timete	for t
	Televisia contract i	Resentances: The December (MII Association Largement (MII Association Largement) The Mail and All Association and association (MII Association and extended (MII Association Rese and extended (MII Associa	Andrew (Platen Baserman) of a regard wind dig dataset of a baset of a sector regard re	partie To and Sparing school and anticlation of Sparing School and Space School School School and Space School Space School Space A Space School Space School Space A Space School Space School Space A Space School Space School Space School Space A Space School Space School Space School Space School Space A Space School Space	Contener	April 1



-

A

Impact sound reduction UNI EN ISO 140/8 - UNI EN 10140

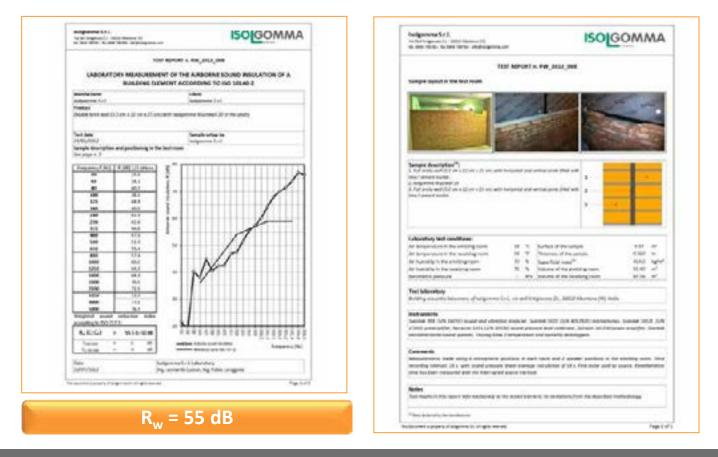
Syl 5

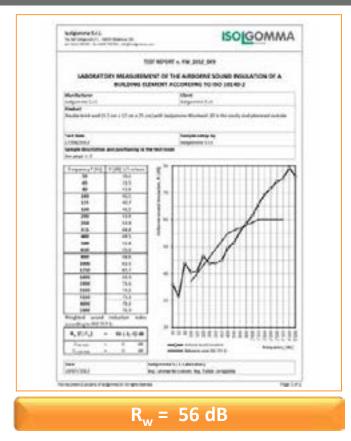
Sylcer 3

DIPARTIMENTO DI FISICA TECNICA	Eligenciation dell'information and particular of process
Continues nº 703 REDASDONE OLL LIVELLO DU PRESISIÓNE DONCHA DE CAL PRISIDI SECONDO LA MORTA DE EN ISO TELES (TUTTE LE PARTI) Mueros in la seconda de la device de l'advente la segure de la device de la manufaciente de prestantialmente este ante de device de la device device device de la device devi	
Relationation in information for the definitionation (27), 2000 Addresses the formation in the proven executed with the following for processing of the proven executed with the following for processing of the proven executed with the following for processing of the proven executed with the provent executed with the proven executed with the provene	Prescribtlese of Pathemeters is preserve, in solutionship, languish, da yin mesentin in Ludika, conversion di agenerati languisheran cale assessi te mana kawana cangan presentang serve presentang, serve a pranolatera, serve presenta i languisheran bia assessi te mana kawana cangan presentang serve pranolatera, serve pranolatera, serve pranolati a conversione di agenerati languisheran bia presenta di presenta di presentang anti presentang serve pranolatera, serve pranolatera assessi anglerativa bia presenta di presenta di presentang anti presentang serve di presentang and presenta di p
	Exception of Spectra Departure status data from the provide Departure status data from the provide Departure status data from the provide Departure status data from the provide status of Status The provide status data from the provide status of Status The provide status data from the provide status of Status The provide status data from the provide status of Status The provide status data from the provide status of Status The provide status data from the provide status of Status The provide status of Status data from the provide status of Status The provide status of Status of Status of Status of Status The provide status of S
	Analisente al pareira converse accessive landingerenza Sol, elas des Antigamente 21. 20000 Admittore (VV), Balas, Winnensitatantes definicades enablecentes persona bencha Hall (UN) (1971), interactivas benchesses (VVII) (2014), presentatantes devines dell'accesso de VVIII) (2014) estatentes en enablence (MVIII), interactivas benchesses (VVIII), approximate enablence personalizationes (VVIII), program de la contrato registrationales, personales (VVIII), antientes terretura Damitta (VVIIII), program de la contrato registrationales, personales et la contrato de la particulario de terretura de la contrato de la c
Table Alterna Contraction	Materi i nordeli di proce Lockecchi na presente segneto ol efectorea accurate di seconto pricedo, resolve manchese dei fataleli di price della della di 10 fueroreale di resoluto, interi neclarito, collarito, presente resolvette 11 fueroreale di resoluto. 11 fueroreale di fueroreale, interi neclarito, collarito, presente resolvette 11 fueroreale di fueroreale. 11 fueroreale di fueroreale colla della di collarito.
$\Delta L_{w} = 17 \text{ dB}$	Parises 21000001

Sylwood 3

Upgrei 8 + Sylwood 3


CNTC	3 8:00	The second second
THE OLD THE PLACE REAL THE REAL PLACE	1. 2002	in Elliner
any mainter.		0aa 311
Camillo and a statements	They is an inclusion	Wite address to the
entering of the second se		10
Country	Report Part	8000 0.75pt
Rail residences Laboratory of	and the second se	Chart and d'its principal of largest
Anna by Sa Reasoning Contract of Contract of Relationships (Alternation of Contract of Contract of Contract operationships of Contract of Contract operationships of Contract of Contract of Contract operationships of Contract of Contra	encodering on a final specific device of P. 41 of same for the final strength point of the solution of baselines () with the solution of multiple of Point (100 bits 1000) with a solution of Point (100 bits 1000) with a solution of solution () with the final sector of solution () with the final sector of solution () with the final solution () where () wh	er 1 ferhalt berg pipe 2 helfig dense frei 1 2 helfig dense frei 1
manners Andrews And	encodering on a final specific device of P. 41 of same for the final strength point of the solution of baselines () with the solution of multiple of Point (100 bits 1000) with a solution of Point (100 bits 1000) with a solution of solution () with the final sector of solution () with the final sector of solution () with the final solution () where () wh	er 1 ferhalt berg pipe 2 helfig innen frei 1 2 helfig innen frei 1
Assamption Assamption of the Assamption of the Assamption of the Assamption of the Assamption of Ass	And a final sector of the sect	en A strandig dense, perge Phalling dense, frech and charling research frech and charling research and the stranger strategy and the second strategy of the second free second strategy of the second strategy for bandways with a second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the free strategy of the second strategy of the second strategy of the second strategy of the second strategy of the free strategy of the second strategy of


Transmission loss UNI EN ISO 140/3 - UNI EN ISO 10140

Mustwall 20 - double brick wall

187

Mustwall 20 - double brick wall

a an ingeneration and international	÷-	ISOL	SOMMA
	ST REPORT & PAR, 2011		
Setige layout in the lost roam			
Antare manufation ¹⁰ (Antare 4 any control 1 Antare 4 any control 2 and the well for an a 1 any any well any control types 2 any control types 3 any control types 3 any control types 3 any control types 4 any control types 3 any control types 4 any		12	
Laboration and small lane.			
As temperature to the sectors error.	A. 7. Advantes	Long to the local data	1007-1001
to intervalues it the second grants	B 5 Testanda		\$290 m
At the Carlot in the environmentant	H. S. Sandaria		and when
an humania in the research a result	M. b. Smith of the	and global	38.78 M [*]
heimers ethics	ats 100,000 at 10	- network have	41.6
Teel bile sharp define an effet interesting of temperature (-1	(1) Herbert (2), Ber	
Pulluments			
tanna an //n street and one come			
2 Vell prompties, income 1222 (129-129) receipter to set used assere. Drump the			an orange second
Researching their array of recognizing a	the mer tax a proton	state and a li	a stating test. Ing
econing cleans Min, and cover presses the header's respired and the frame and	Name and a state of the		
No.			
Rad wards fold it report addressing for	The BARBEL CHARGE AN ADVIDED	and price (see the first speed of	- marine
The state of the local data and			

Mineral 50R - double brick wall

Biwall 40 - double light concrete wall

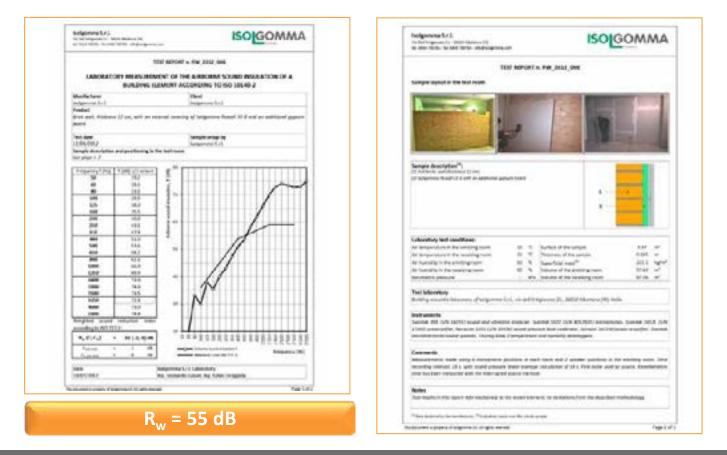
Light spectra for the spectra for a light of the spectra for a spectra for a spectra for a spectra for a light of the spectra for	holgenete Scil. In Scillage and Scill (2000) (Annual 10) In Statistical Scient (2010), and experiments	ISOLGOMMA
	TEST ASPORT IN A	w,mar,nca
Liphic production does up to be a fit of a liphic of the ward or procession or any many many many many many many many	sample spect is the top room	
Light spectra for the spectra for a light of the spectra for a spectra for a spectra for a spectra for a light of the spectra for		17
No insequences the entropy of the second sec	arthul anna, Ananai (Cala A Anarthu	
No importance the entropy of a 1 to be the differentiation 1.1.1 million No importance the entropy of the entropy	abardies test coefficies	
All Andread (a) is the exceeding array in the second of the property array is a second of t		the of the second secon
No instanting process 0 5 Jointow of the instanting process 01.41 ft w ² Next Methods in the control of the instanting instantion of the instanting process 01.41 ft w ² w ² Next Methods in the control of the instanting instantion of the instanting process 01.41 ft w ² w ² Next Methods in the control of the instantion of the instanting insta	At temperature if the teaching rains III III III	tourses of the assister (6.510 to
An example of the second of the location of the locatio the location of the location of the location of the location of t	Mitweakly in the environment of the last	and this read?"
Tel Ubloader Tel Ubloader Tel Ubloader	in handlich far basierannen 🛛 🖏 🦄	tone of the entiting ment. It is a "
André y conserte descenses d'arrigeneses (etc.), es articles process (d), Millé Harrows (H) Insis. Instrumente Santas III des Lateria insuel and observe manage samme later vertices autores (d) Insis. Instrumente Lateria proceedings (d) Insiste autore process later vertices autores insiste autores autores deserve management management (d) Insiste autore process later vertices autores insiste autores autores deserve management management (d) Insiste autore process later vertices autores autores autores autores deserve management management (d) Insiste autore process en autores autores autores autores autores deserve management management (d) Insiste autores autores autores autores autores autores autores autores autores management reacted autores autores autores autores autores d' d' or find management autores formationes management reacted autores autores autores autores management reacted autores autores autores autores autores management autores autores autores autores autores autores Notes Notes	termetre peleure etc. etc. etc. etc. etc. etc. etc. etc	state of the leading room 67.17 m ²
André y conserte descenses d'arrigeneses (etc.), es articles process (d), Millé Harrows (H) Insis. Instrumente Santas III des Lateria insuel and observe manage samme later vertices autores (d) Insis. Instrumente Lateria proceedings (d) Insiste autore process later vertices autores insiste autores autores deserve management management (d) Insiste autore process later vertices autores insiste autores autores deserve management management (d) Insiste autore process later vertices autores autores autores autores deserve management management (d) Insiste autore process en autores autores autores autores autores deserve management management (d) Insiste autores autores autores autores autores autores autores autores autores management reacted autores autores autores autores autores d' d' or find management autores formationes management reacted autores autores autores autores management reacted autores autores autores autores autores management autores autores autores autores autores autores Notes Notes	Teel laborative	
Same BY UN DEVIDENCE and and one operations are same tool on the ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADD	Antigeneering in a set of the second s	erry JL, Milli Alkenne (M) Indu
Another server was and a construction produce of their space of a server produce of the server groups and the manufactor server. If it is not produce previous previous solutions of the server produce constructions and has been remained with the server previous server in the server of the server produce constructions where the manufactor states and the server versions, we construct from the described traditionings	a limit preservative. Nonacce 1.011 (12% 2010) where preven	But others, longer introduces studyes thereas
Another server was and a construction produce of their space of a server produce of the server groups and the manufactor server. If it is not produce previous previous solutions of the server produce constructions and has been remained with the server previous server in the server of the server produce constructions where the manufactor states and the server versions, we construct from the described traditionings	(mmm)	
monthing statuted all is well stand account them namenae introduces of sit is. First index and so statute, themsenation and backlass research and the them and account motion. Name Ratematics with space splot reactioning is the income strength or incodence, from the deal-first modewidence		and and I assume particular to for storing same. Time
	Autori	
		to sentations/yes the dear best homeology
	They indeed to be included in the second diversion of the second	

Transmission loss UNI EN ISO 140/3 - UNI EN ISO 10140

Biwall 40 - double light concrete wall

Mustwall 33B - 120 mm brick wall

angenera S.F.C. Nationalistic Science of Articles Science of Articles Science Science of Articles Science of Articles Science	ISO	GOMMA
TRUE HE	0007 A. MIR_2012_001	
langie lassettie the last more		
		F
angan inaudotan ⁹) 2 kilonik peluktore (Juni 2 kilonik telakti (Juni al alalang pasar (*	
dentity but unditions		
is adjusted in the and ing sums in	 Barlais of Recordsing 	337
to sequence in the boalding time 10	 Tourna of the parals 	1.1ab
	 * Special real* 	2011, 1977
	B. Notice of the antibility room	17.14 107
prinse press	We Mare differenting tops	A134 - 67
Their Subsensionsy Andreag accounted components (1.4.), one	art triggeress (1), mant taxeness (11) to	A
halt when the factorial ADE SAN (ADE) when it and when the sends	or band the let ALAN strate	
1989) promy piller. Newsonia 2,851 (1)/A 2008) and arcentrational second genetar. Solving Stee (1)/any		prost pisylffer Davide
Responses with poly 2 stimples police society stored 12.1 with sourd person Response to backet rescaled with the block and con-	everage considering of \$5.1, find make party	
inter And an all the later of the sector of the later	ni patranij da piranizma, kom ina akrateka	
	41. CONTRACTOR (0.000)	100000
last desired to be reacted and. ¹⁴ to desired read and rea		


ISOGOMMA

e ste

Page 1 al

Rewall 33B - 120 mm brick wall

Mineral 40RB - 120 mm brick wall

and the second state of th	-	SOLGOMMA
,	IST NOTIONT & P.W., 1912, 514	
langue layout in the last much		
The second s	1000	STATISTICS IN CONTRACTOR
CONTROL OF	10000	
A DECK		and the second second
and the second s	and the second second	and the second se
Senary Anorthis		
(a full sector walk (declaring ()) (4c) () to Spream Advances (1) the sector of sectors ()	pation trainer	
		·
		1
Calculating tand monthlates: An empirication of the sinitizing scare	M. T. Infections	4.01
An international of the second process	H T. Nation of Parameters	
As humidity in the emidting men	10 % Sawhistren ⁴¹	1010 tube
for function to the teaching cannot	of the interval in a string	
Secondry persons	the loss of the results	
Trut laboratory		
Failing country termines of prigornees	or an and it is successful the state of the	and the last
and works		
Senield #18 (UN SETE) word and cheek		
rass hereichder geneter führ für so		
periodisetter territories galaxies. They been	Linds the or dealed grandle	•
Conners		And and the second second
Designments must using it Pumphote.	printers a start takes and I grouper a	suffered at the property mark them
secondly identif (if a with load annual		
one bis later managined with the sear-grad		
Notes		
ted reads in the most advised any to	In succession, to deside a paint	a Aurous namatosp
The second in the section of The second in	A 141 PL - CAT M 181	

Transmission loss UNI EN ISO 140/3 - UNI EN ISO 10140

ISO[GOMMA

Trywall 48 - 100 mm gypsum wall

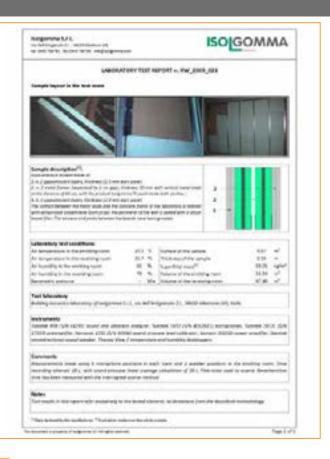
Trywall 48 - 160 mm gypsum wall

Reconserved (and effective) and the second second second second second second second second (1993) assessed for Second 1993 (Art 6000) and a second secon

environmental sense unity il recomplicite analisme in analisment al antider publicit in the environmental environmental and environmental sense recomplications of (21). Per units and in source formulae in the formation environmental and environmental **Notes** Taat maalis in tala mperenasite paaladine ja teine kunnal vääteret, sa denatatase jaan den daarakkud on t The black is making " but any sales in the state same

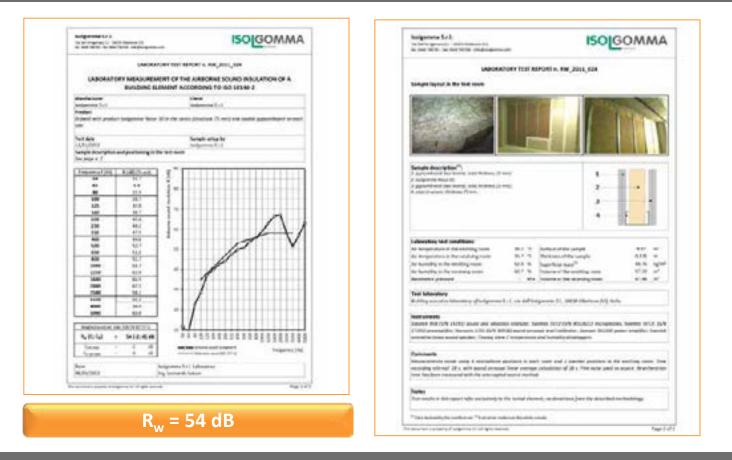
191

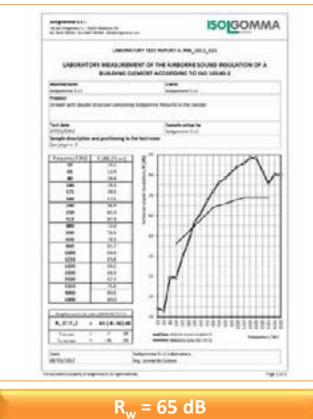
Top (v²)



Trywall 48 - 200 mm gypsum wall

Trywall 48 - 160 mm gypsum wall




Transmission loss UNI EN ISO 140/3 - UNI EN ISO 10140

Natur 50 - 125 mm gypsum wall

hilganina Sc.)

Natur 50 - 220 mm gypsum wall

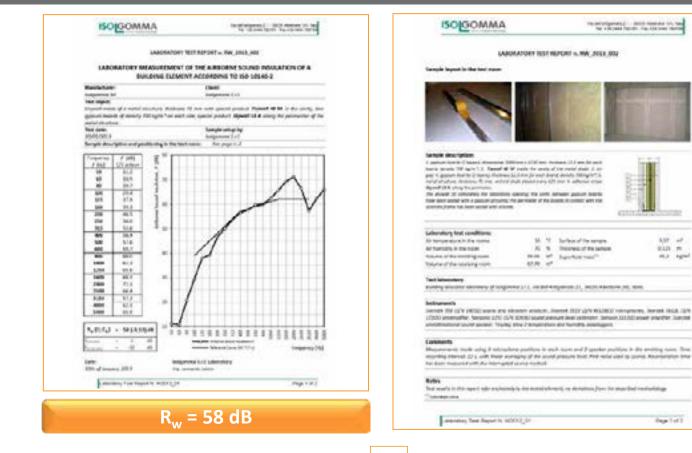
ISOGOMMA And in the local difference of LANDRAYDRY TEXT REPORT IN MAX, 2011, 022 Ranight Spread in the last room her giv description" N MAY 12 ---ne Arren 10 Anne Jacob Agent, Anter Sec Anter Andreas (17 me) Laboratory last canalities
 ID-6
 T
 Springer-OF-Bac springer

 SD-6
 T
 Propositions of the springer

 VM-8
 Topographical springer
 As the party of the stating more de Telependencie der unstellig vom der Reserblig in Reconstitutionen der Samteligen Parisonaligenem Year following Relief generative interactive of integration (1) (1, via district systemic, pt., decisive between (vi), statis Institutions in the solution provided and an endow and provide the solution of Residence and using a monophere periods as that have said 2 specific periods in the specific spectrum specific although 10 (a) and another periods that realizing exclusions of 10 c. this near periods specific specific basis **Nates:** The sector with spectra providency or the tensol present, or descented on the described reductings

of a second of the second in the second

193


Page 2 al 1

Mineral 48 RM - 100 mm gypsum wall

Mineral 48 RM - 125 mm gypsum wall

6.00 - ---

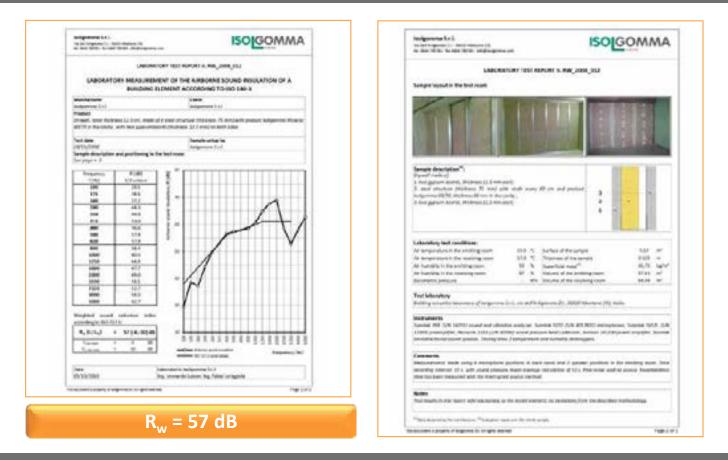
Page 7 (F)

Walls insulation

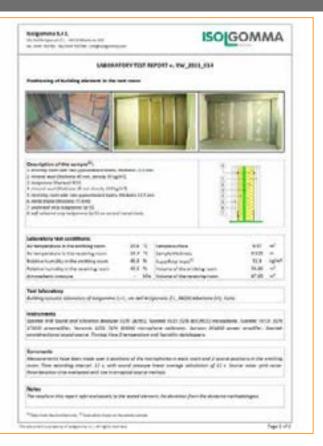
Transmission loss UNI EN ISO 140/3 - UNI EN ISO 10140

Mineral 48 RM - 160 mm gypsum wall

Mineral 48 RM - 160 mm gypsum wall

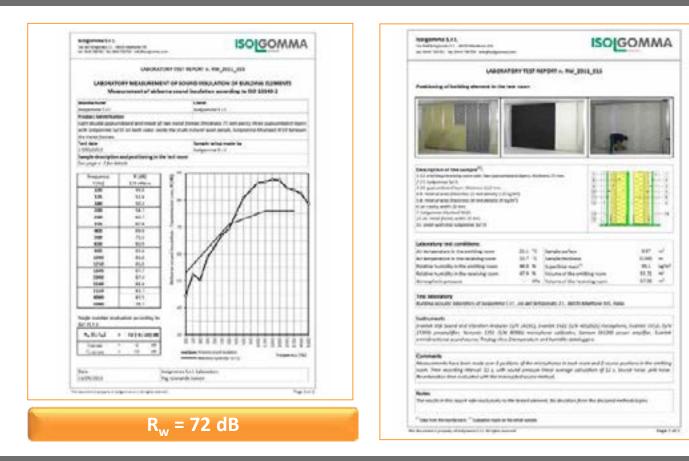


195



Mineral 60-70 - 125 mm gypsum wall

Mustwall 10 - Syl S3A - 125 mm gypsum wall



ISOGOMMA

Transmission loss UNI EN ISO 14<u>0/3 - UNI EN ISO 10140</u>

Mustwall 10 - Syl 5 - 265 mm gypsum wall

Fire resistance - Trywall 48

3.2 Conditione di espi		^{1/2010}	and a second		Rapporto Classificazione No. 4 Okta Emissione Pagina	1/07/0-7499K 33/07/2010 2/4	9 9000
Partitiente del forno i 5.1.2 e 5.2.1);	tampo: standard (le cond rispondono a quanto indicato	nella EN 1363-1, p.to 5.1.1		Il presente rapp all'elemento denon	nto di classificazione definiso inoto "LIGHT 100 T46" in acci 17 e dalla EN 1364-1 ed. 1999.		
 Dreatone di esposizio Numero di superfici e 	ne: unica – campione <u>simme</u> sposte: 1	tricos		2. Dettagli de	i manufatto sottoposto a pro	va	
3.3 Risultati di Prova		100		2.1 Generalit		Cer-	
19415404018 (ICOS)20					va, denominato "LIGHT 100 T xosta a carico. In accordo a qua		
Criterio di prestazione	Risul	Itato	4	1999,	Asia a canco. In accoror a qua	no prevolo cala ci	4 1309 1 60.
and the second second second		Tempo [min] 121 ^(*)	-	2.2 Descriptor	e del Nanufatto		
Tenuta (E)	Tampono di cotone Calibro da 8 mm	1210	-	Country of the second second	minato "LIGHT 100 T48"	A completements	Security and
Contrast (1)	Calibro da 25 mm	1210			No. 43/C/10-79FR del 30/07/2		
and the second second	AT and > 140 °C (Tc 1+5)	121 ⁽¹⁾ (AT	-	stesura del present	e rapporto di classificazione.		
Isolamente (I)	ATam>330 °C (Tc 1+12)	121 ⁽⁷⁾ (AT _{nuc} =68 %)	-	L'elemento in prov	a é una parete divisoria realiz	zeta con doppia la	stra per lato
	impo di applicazione dei ri è stata eseguita in accordo i 07.	Contraction of the second s	6	montanti a "U" di verticale realizzata 0,6 mm poste a	i metallica interna costituita da mensioni sezione 40x50x40 mi con intoritariti a "C" dimensioni di interasse di 500 mm; spe di interasse di 500 mm; spe dimetalica è stato interasione.	n spessore 0,6 mm sezione 51x50x47 m ssore totale pareto	n e orditura mi spessore e 100 mm;
La presente classificazione 7.5.2.4 delle EN 13561-2.20 4.1 Classificazione L'elemento in prova donomi seguerte combinazioni di pa	è stata eseguita in accordo i 97. Nato *LIGHT 100 T48 * vian nametri e classi appropriate.	a quanto previsto al punto e classificato in accordo alla		mentanni a rüm di verticale realizzata 0,6 mm poste a linternamente alle ocustico realizzato- gomna SBR e gran strati esterni di fib nominali singolo pa Le casatteriscider o provo dol manufat ceti rapporto di p	mensioni sezone 40x5x40 mi con inontarti a "C" dimensioni e interasse di 600 mm; spe struttura metallica di suno st ui di gomma EPDM (spessore 10 m a di poliestere (spessore 20 mm nelle 1200-600 mm spessore 30 m lei componenti, le condizioni di o denominato "LL200-56% formito o denominato "LL201-56% formito	n spessore 0,6 mm sexione 51.5047 n sexione 51.5047 n second trable parebu ento uno strato d nato centrale di fibre 8 mm densità 60 kg/m ²) tale 48 mm. assemblaggio e le 6" sono compietame	n e orditura nm spessore a 100 mm; i solamento e granuti d g/m ²) e due), dimensioni condizioni di nite descritte
La presente classificazione 7.5.2.4 delle EN 13561-2.20 4.1 Classificazione L'elemento in prova denomi	à stata esiguita in accordo i 97. Nace "LIGHT 100 'Hill" vien nametri e classi appropriate. I M C S IV	a quarto previsto al punto e classificato in accordo alla ncSiow ten el t		mentanti a ruir di verticale realizzata 0,6 mm poste a laternamente alla acutio realizzato- gornna SRR e gara strati esterni di fito nominali singolo pa Le casatterischite o provo dei manufati rei rapporto di p gresente Rapporto 3. Dati a suggi 3.1 Rapporta	mensoni sezone 486/30-40 mi con itoritarii a "C" dimensioni di Interasso di 600 mm; spo struttura metallica è stato ino struttura metallica è stato ino tui di gomma EPOM (spessore 1 a di poliettere (spessore 20 mi nello 1200x600 mm spessore to el componenti, le condizioni di o denominato "LiGMT 100 T44 ova Na. 43/C/10-755R fornito di Caxellicadone, orto per l'emissione del Rapp	m spessore 0,6 mm sectore 51x50x47 m sectore 51x50x47 m sectore totale parets entre uno strato di fore 8 mm densità 60 kg/m ²) tale 48 mm, assemblaggio e le 1 ⁶ sono completame a supporto per la porto di Classificazi	n e ordhara en spessore e 100 mm; i solamento e granuli d (gim ²) e chae b, thrietokon conditioni d nte describe stesara del
La presente classificazione 17.5.2.4 delle EN 13561-2.20 4.1 Classificazione L'elemento in prova donomi seguente combinazioni di pa	à stata esiguita in accordo i 97. Nace "LIGHT 100 'Hill" vien nametri e classi appropriate. I M C S IV	a quarto previsto al punto e classificato in accordo alla ncSiow ten el t		mentanti a "U" di verticale realizata 0,6 mm poste a litternamente alla accusio realizato gomma SRR e gan strati esterni di flo nominali singolo pa Le casatteristiche e preva del manufat rei rapporto di pr gresente Rapporto 3. Deti a supp 3.1 Rapporto di Fin	mensioni sezone 40x5x-0 microsomi con isontanti a "C" dimensioni di Interaceo di 500 mm; spe struttura metallica è stato ino st uli di gonima EPDM (spessore i a di poliestere (spessore 20 mm nello 1200x500 mm spessore 30 e lei componenti, le condizioni di o denominato "LIGMT 100 T44 tova Na. 41/C/10-75ER fornito di Cassificazione. orto per l'emissione del Rapp Il Preve	m spessore 0,6 mm sectore 51x50x47 m sectore 51x50x47 m sectore totale parets entre uno strato di fore 8 mm densità 60 kg/m ²) tale 48 mm, assemblaggio e le 1 ⁶ sono completame a supporto per la porto di Classificazi	n e ordhara en spessore e 100 mm; i solamento e granuli d (gim ²) e chae b, thrietokon conditioni d nte describe stesara del

197

Transmission loss UNI EN ISO 140/3 - UNI EN ISO 10140

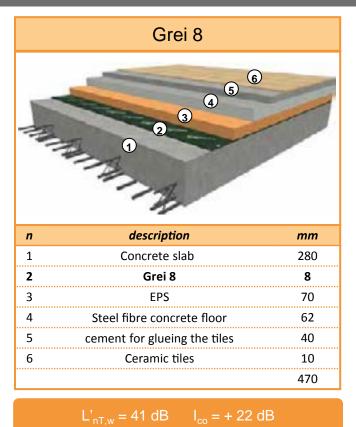
Upgrei 8

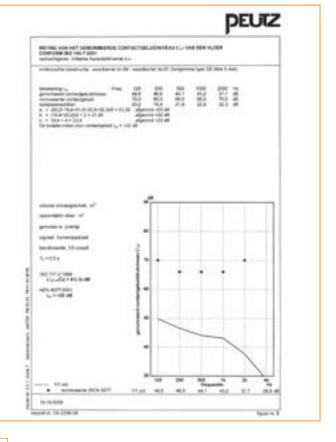
DEROGHE	1	1	ACCREDIA	DESCRIZIONE DEL MATERIALI Aporto Tastre Desabili comunicata di potore bianco accopiato sulti Costitucione del manufatto (*):	E a da granuli in gomma di colore grigio no eltro a un lassuto non lessuto di colore ve	otiati su materiale for rde.
Neesona.				Denominazione Commerciale	UPGREI 8	
				Produttore	ISOLGOMMA S	d.
RISULTATI	Temperatura ambiente Unidità retarius :		23x2)*C 30x5/%	Descricione del materiale	Isolarita acuito en roto nealizzato e composito da granui di generali Egoma EPO Dierre Monomer) ancorati a catóc con la societto acorgopiato, in tessato con la graffi di colore vende a una fisica di po dimensioni de rotolo di 500 cmi ni e la sovapposizione del rotol in tabec di la sovapposizione del rotol in tabec di consplesato di 200 kg/m ² , rigida dina consplesato di 200 kg/m ² , rigida dina consplesato di 200 kg/m ² .	A (Ethylone Propylene ittore carbotsilato ad u sixto antistrappe da 80 destere da 200 g/m ² inghesza, 104 cm in laterale adesivizzato p ose, massa sucertican
	1223	10 CONTRACTOR		Componente	Composizione	Peso (g/m ²)
	Temp	eratura di preva: 21°C		1º Strato	Tesauto non tessuto in poliompilene	80
Missora	Spessore rilevato	Condutività termina à	Resistenza Teenica R	2º Strato	Fibra di poliestere	200
. 9 ⁶	¢ma	(Wim-K)	(m ² K/W)	3º Strato	Granul di gomma EPOM	2320
- 82	0.0103	0.0479	0.215	Assiemaggio dei componenti	Colia latice carbosalato	W
2	0.0097	0.0476	0.209	Spessore totale (*) 8 mm - Per		
3	0.0094	0.0405	0.302	Impiego (*). isolante acustico a pr (*) - informazioni fornite dal Richa		
		0.0473 calcolato come rapporto Va		DESCRIZIONE DELLA PROCED Il campionamento dei provini del		Rohiedente nel mese ETTONE (VI)
Nota 2: su un imegolare, no proveto tal qu Nota 3: spesi	a faccia il materiale present n stanare. Non è possibile i ale loce nominale di il mm, ma	coore ritevato del campione s la granuli di gentrina che ren Menanine per ripianare tale s spesatori rilevati di cena 10+ imi prossiono delle pietiro).	dono la superficie molto superficie, il materiale è stato	CONDIZIONAMENTO	nne alla nooma 3 riterimento; re ±1 mg; referere entro ±2% l'umidità relativa de ±5% di umidità relativa per un minimo d	
UTA PROV	E: 05/04/2011	(Ser	nicry o Crossin	PROCEDIMENTO DI PROVA Conforme alla norma di rifereventi Per la determinazione della propr (23°C - 0/50% LIR)	encountry and support of the	
		(MC		RISULTATO		
		12	1/1	Fettore di resistenza alla diflusion	DI TRASMISSIONE DEL VAPORE ACO	UED

Biwall 40

A PARTY IN A TABLE	a all gibt al'shift and a set of the set of the		DESCRIPTIONE DEL CAMPIONE		
RACCOMANDAT	TSOLGOMMA S.F.1. Via Dell'Artiglando 2 36000 - Alastaine (V		Description of the geochesics Aspectis: Perivates accorporates pontrals, di todora ranoi Agreenerico: Despinicionerre scatal Spassarere parmetto e giorena ra Silentatore pinnello policativo i fi Spassarere intello i fiscali todorano Descriptioni Con Spani, far rigidan Descriptioni Con Spani, far rigidan Sales al view Con Spani, far rigidan Sales al view Con States.	the lay flow period, tyreser attach deber partiel Westweat, 10 min Ayrther partiel Beldensig: 30 min (*) 46 mm. dis in generat, 40 types* per 1 p	and relative granuate plane statue)
ingua (italians/in with retence to	V9. richtepte, vil cinettiaena in alegata na. Raigne glebal, ciotenente i rischaft delle prove affettuate i ristr britter, glebter britt encourte dur Teet Australia richtering Die resulte all Die tests offettad au rover	tu Va. materialer dhuble fandusce	 Primerentiamia del Relativamia de		
a grant and a state of the later of the late	Hetodo di Frons Test Hetred	All Laborations Laboratory Ref.	Applanechatura a termetikasung Hear Russieller appresitus with cu	h, tor sangiana di saliknadiana Bration geophian	
MIOPIBRA	Lines an 13447 3403 Propagation Number for materials a de produits per Interna Automotivatione della recidenza large method del terrentezione della recidenza large method del terrentezione della della e medi restativati terrentezione Pattermentezione di terretti y scatario del meteo a dettermentezione di terretti "scatario del meteo a dettermentezione di terretti "scatario del meteo a dettermentezione di terretti "scatario del meteo a dettermentezione di terretti persona della della della della della dettermentezione di terretti andi terretti persona della diglia and meta fine meteo metadone.	1158/07	PROCESSMENTO IN PROVA E I Procedure and deviation from the Temperature mode of means / M REPORTANT Report	deal mulhisd	
		Con 1	Statistics made Average Adverses (77)	Constantials Yerritra 1 Recently constantially (With N	Republican Tarrica R Tharmad realization path ANN
			6.04	LMF	4.00
			CATA PROVE: 15/80/00/7 Text date	Operat	an / Optimer

SITE TESTS

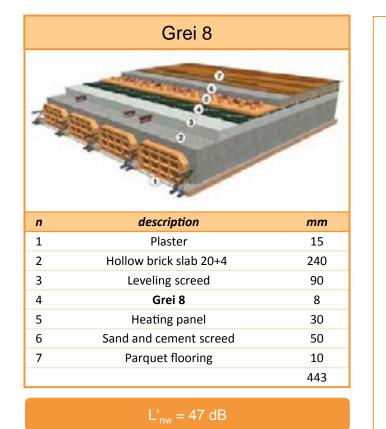


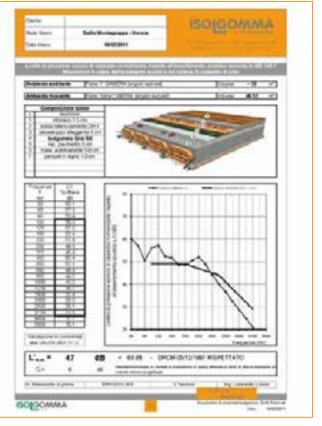

Floating screed

Hollow brick slab 24+4

n	description	mm
n 1	<i>description</i> Plaster	<i>mm</i> 10
1		
n 1 2 3	Plaster	10
1 2	Plaster Hollow brick slab 24+4	10 280
1 2 3 4	Plaster Hollow brick slab 24+4 Leveling screed	10 280 80
1 2 3	Plaster Hollow brick slab 24+4 Leveling screed Roll 10	10 280 80 10

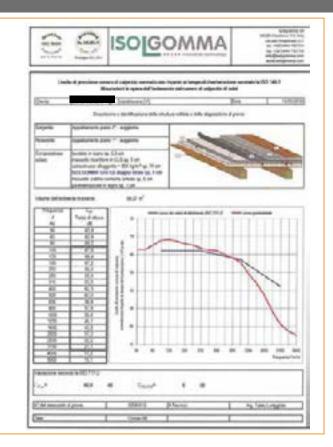
Concrete slab 280 mm





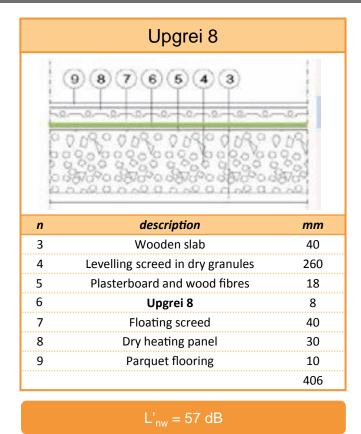

Floating screed - Wooden slab structure

Hollow brick slab 20+4



Wooden slab structure

 $L'_{nw} = 60 \text{ dB}$

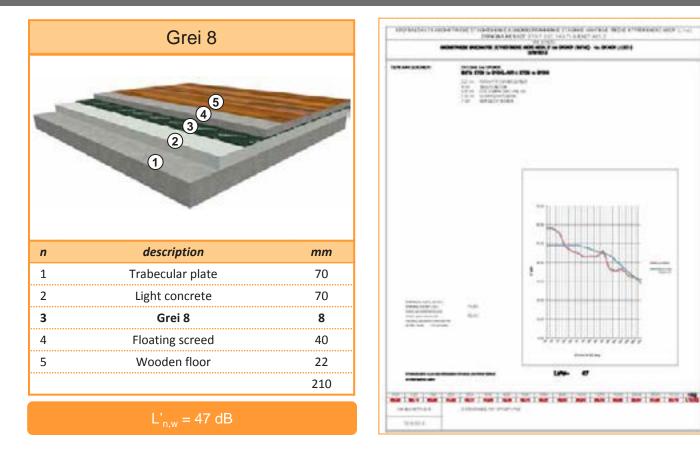

201

Wooden slab structure - Under wooden floor

Dry system wooden slab

Under wooden slab - hollow brick slab 20+4

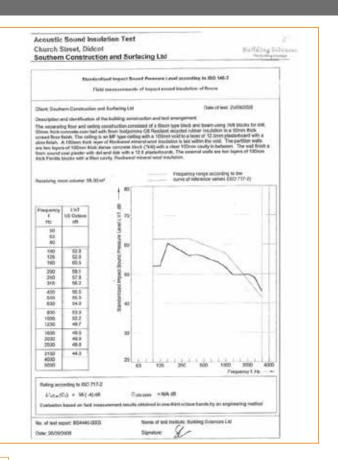
Syl 5 (5) 3 2 description n тm 1 Plaster 15 2 Hollow brick slab 20+4 240 3 Leveling screed 70 Sand and cement screed 4 50 5 Syl 5 5 6 Parquet flooring 10 390


<image>

 $L'_{nw} = 60 \text{ dB}$

Floating screed

Trabecular floor

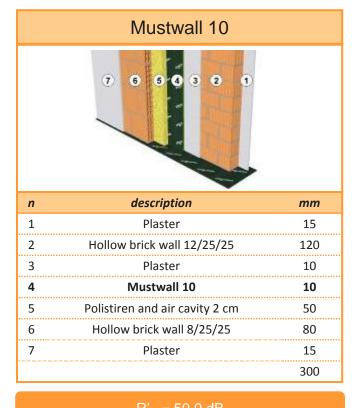


203

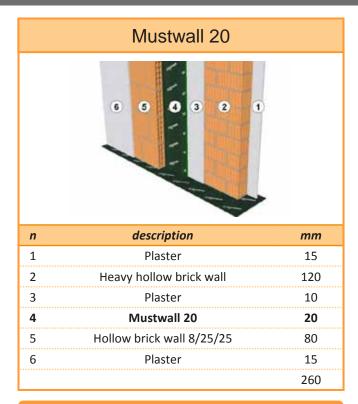
Beam and block floor

	Grei 8	
n	description	mm
1	Gypsum board	12.5
2	Rock wool	100
3	Beam and block floor	150
4	Sand and cement screed	50
5	Grei 8	8
6	Sand and cement screed	50
7	Floor finishing	10
		380

 $L'_{nT,w} = 56 \text{ dB}$



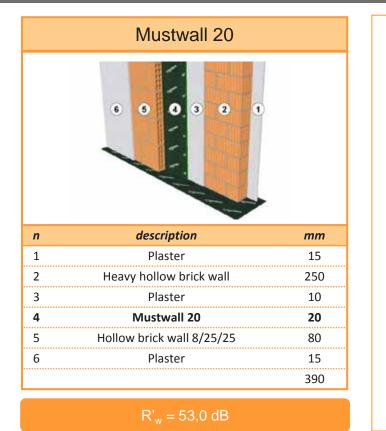
Double wall

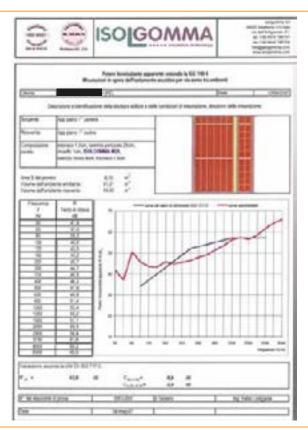

Double wall 12+8

ISOIGOMMA 0 3 President and a second se many Departments Tim Ar Colors I and and its or, working for a 12 or 8 3 10.0 3 3 SC Namora April Plane. 107.04 ing Fully Longer

$R_{w} = 50,0 \text{ dc}$

Double wall with heavy hollow brick wall

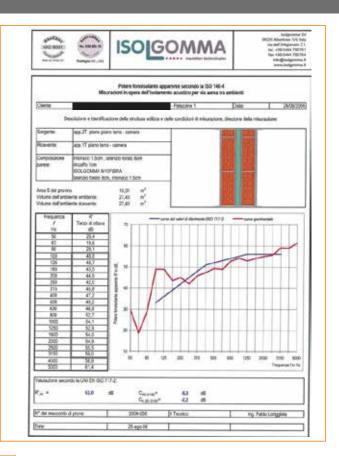

 $R'_{w} = 52,0 \text{ dB}$



Walls insulation


Double wall

Duble wall 25+8



Double wall 8+8

 $R'_{w} = 52,0 \text{ dB}$

ISOGOMMA

EXAMPLES OF ACOUSTIC BUILDING CALCULATION

Technical analysis for acoustic insulation

Suggested products	Trywall 48, Mineral 50-70, Grei 5
Notes	
Project	
Objects	Wall and floor insulation
Country	Netherlands
Client	

Date	Writer	Report number
		ENG-B-2012-XXX

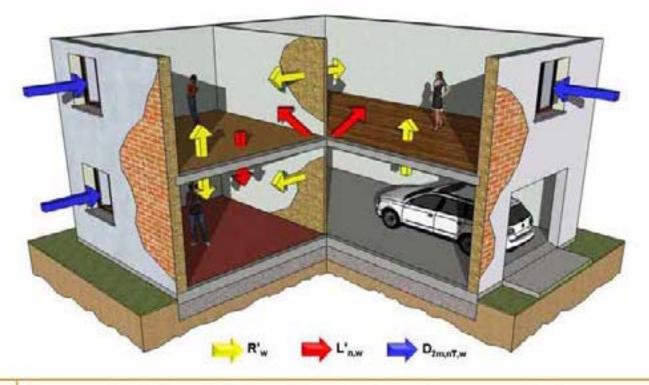
Abstract

This soundproofing technical report represent the best knowledge of ISOLGOMMA SRL in the building industry for acoustic insulation. This report indicates our best acoustic technical solutions based on our theoretical knowledge and based on our market and application experience. It do not replace the competence of the deputed technical body or equivalent departments. This report can not be used as unique acoustic document reference to issue a building permit. All the results and acoustic indications of this report are valid if the product application procedure, shown in our manual book and here synthetically mentioned, is correctly implemented. ISOLGOMMA Srl is not responsible for the result and quality of product application procedure.

Index

Acoustic parameters in buildings	3
Minimum sound performances for housing in Europe	4
Determination of Rw and Ln,w with ISO 717-1 and ISO 717-2 standards	4
Thermal conductivity - Definition	5
Estimation of the acoustic performance of walls	6
Estimation of the acoustic performance of floors	8
Particular prescriptions	10

Attachments

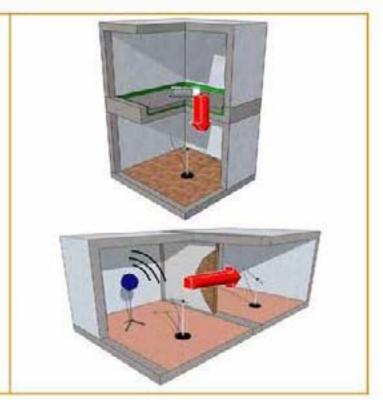

Technical data sheets

Warning

Airborne and impact noise insulation values are calculated with a software owned by bolgomma S.r.I. The results are not laboratory test reports and the accuracy of the prediction depends on the formulations adopted in the calculation model and the precision of the input data. In some cases, overestimated or underestimated results can be found for complex building elements.

Termic analysis is approximative and refers to a database of thermic conductivity values owned by isolgomma S.r.I. This database can be different from other databases in different references.

Acoustic parameters in buildings

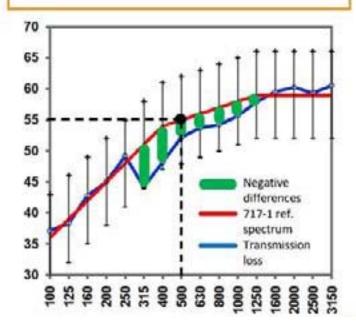

R'w	airborne sound insulation weighted index of separating elements between rooms in site.
L'aw	impact sound insulation weighted index of floors in site.

Impact noise is the sound pressure level measured in the receiving room, caused by the sound radiation of the floor, excited by the standard tapping machine.

 $L_n = L_i + 10 \cdot \log (A / A_0)$ [dB]

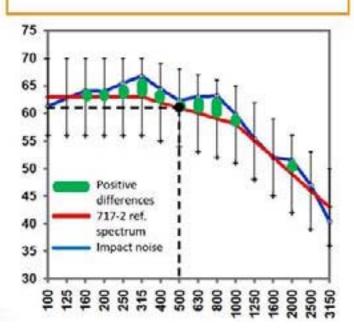
The transmission loss (R) of a separating element describes its capacity in reducing the sound energy transmission. It is described by the ratio between the incident and transmitted energy.

 $R = 10 \cdot \log (W_1 / W_2)$ [dB]


Minimum sound performances for housing in Europe

	Airborne acoustic insulation	Impact noise insulation (floors)	
DK	55-58 (R'w + Ctr 50-3150)	53 (L'n,w)	DK
SF	55 (R'w)	53 (L'n,w)	SF
N	55 (R'w)	53 (L'n,w)	N
N S	53 (R'w + Ctr 50-3150)	56 (L'n,w)	5
D	53-56 (R'w + Ctr 50-5000)	53 (L'n,w)	D
NL	52-57 (DnT,w + C)	53 (L'nT,w+Ci)	NL
F	53-55 (DnT,A)	55 (L'nT,w)	F
в	54-58 (DnT,w + C)	58 (L'nT,w)	в
A	55-58 (DnT,w)	48 (L'nT,w)	A
СН	49 (DnT,w + C)	55 (L'nT,w+Ci)	CH
GB	45 (DnT,w + Ctr)	62 (L'nT,w)	GB
E	45 (DnT,w)	68 (L'nT,w)	E
P	50 (DnT,w)	60 (L'nT,w)	P
1	50 (R'w)	63 (L'n,w)	1
EST	52 (R'w)	60 (L'n,w)	EST

Determination of Rw and Ln,w according to ISO 717-1 and ISO 717-2


Spectrum R → Weighted index R_w

The transmission loss index Rw, in decibel, is the value of the reference curve at 500 Hz frequency, after the translation of this curve. The red curve have to be moved up & dow in order to get the yellow areas counting for ≤ 32 dB.

Spectrum $L_n \rightarrow$ Weighted Index $L_{n,w}$

The impact sound pressure level index Ln,w, in decibel, is the value of the reference curve at 500 Hz frequency, after the translation of this curve. The red curve have to be moved up & down in order to get the yellow areas counting for ≤ 32 dB.

Thermal conductivity - Definitions

Index	Unit	Definition	
λ	(W/m K)	thermal conductivity	
R	(m²K/W)	thermal resistance	
R _{si}	(m²K/W)	internal thermal convection resistance	
Rse	(m²K/W)	external thermal convection resistance	
υ	(W/m²K)	thermal trasmittance	

 λ : derives from laboratory tests or references; it depends on the product.

R_{si}-R_{se}: derives from standards; conventional values of internal and external surfaces of the building.

$R = s1/\lambda 1 + s2/\lambda 2 + s3/\lambda 3 +$	Thermal resistance of a multi-layer system
R _T = R + Rsi + Rse	Thermal resistance of a building element
$U = 1/R_{T}$	Thermal trasmittance of the building element

Building element	Intermal thermal convection resistance		
bonding erement	Rsi	Rse	
Internal wall (between two dwellings)	0.13	0.13	
External wall	0.13	0.04	
Internal floor (between two dwellings or towards a cold car box / cellar)	0.17	0.17	
Floor towards outside (portico)	0.17	0.04	

Predictional calculation of wall insulation

A coated wall is used for renovation of an existing wall or to improve an existing wall performance. This system focuses on increasing the acoustic performance with a limited increase in wall thickness. This solution can be adopted when a wall needs to be upgraded to meet local building regulations. The system features a traditional block wall on which a light wall system is installed consisting of acoustic panels with plasterboard finishing.

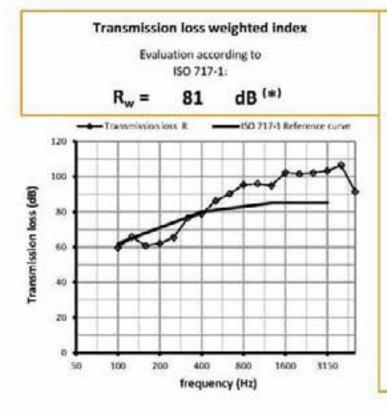
<u>Under-wall strip</u>: Under any partition an elastic rubber Stywall strip must be placed to minimise any sound and vibration transmission from the wall to the floor. The minimum width of the strip width must be equal to the total wall width.

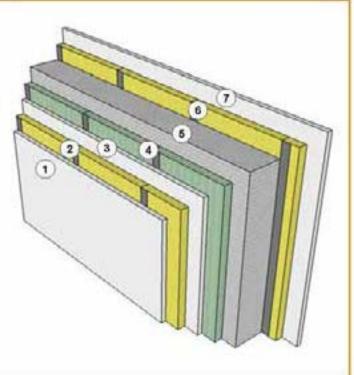
<u>Plaster 1</u>: The finishing layer is generally made from gypsum plaster which, from an acoustic point of view, is used to seal any gaps in the brick wall and contribute to the overall wall mass.

Wall : Composed of different sizes of bricks, depending on wall specification, which are jointed together with mortar. It is very important that horizontal and vertical joints are properly sealed with sufficient mortar.

<u>Plaster 2</u>: The finishing layer is generally made from gypsum plaster which, from an acoustic point of view, is used to seal any gaps in the brick wall and contribute to the overall wall mass.

<u>Acoustic insulation</u>: Fixed to the wall by mechanical nailing or adhesive. The desired outcome is to create an uniform acoustic layer separating the structural wall from the gypsum board. This coating can be done on both sides of the structural wall.

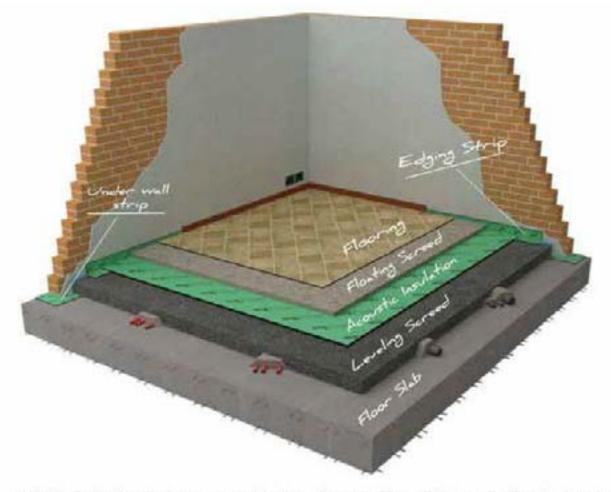

<u>Plasterboard</u>: External side of the wall system made up of one or more layers of plasterboard. These boards can also be of different thicknesses and between the boards an additional acoustic layer such as Syl, can be placed to improve the acoustic insulation...


Client	Contraction and
Country	Netherlands
Suggested products	Trywall 48, Mineral 50-70, Grei 5

Predictional calculation of wall insulation

	Wall composition	ý			
n	Layers description	thickness	conductivity	density	resistance
	(from left to right)	s (mm)	λ (W/mK)	p.(kg/m ²)	R (m ² K/W)
1	Gypsumboard (2 layers)	25	0.21	900	0.119
2	Isolgomma Mineral 50-70 in metal studs (50 mm)	50	0.04	70	1.250
3	Gypsumboard (2 layers)	25	0.21	900	0.119
4	Isolgomma Trywall 48 in metal studs (50 mm)	50	0.047		1.064
5	Concrete block wali	200	2.3	2000	0.087
6	Isolgomma Mineral 50-70 in metal studs (50 mm)	50	0.04	70	1.250
7	Gypsumboard (2 layers)	25	0.21	900	0.119
8					
9					
	Total thickness	425			
	Suj	perficial therm	nal resistance (in	ternal surface)	0.130
	Sup	erficial therm	al resistance (ex	ternal surface)	0.130
		U	- Total trasmitt	ance (W/m ² K)	0.234

(*) Rw is defined as the theoretical weighted index of the transmission loss: this index takes into account the characteristics of the adopted materials, the layers composition and the chosen insulation products. It is not a prediction of the site transmission loss (R'w), which takes into account the flanking transmission, the type of joints of the separating element, the volumes of emitting and receiving rooms.



Floating Screed

TECHNICAL REPORT

Predictional calculation of floor insulation

A floating screed is the ideal solution for the impact sound insulation of any type of floor. This floor system is designed in order to obtain "mass" over the resilient layer which is acting as a "spring" to produce that mitigation effect.

This floor system very efficiently reduces sound waves and vibration flows produced by walking, speaking or other sources. This is thanks to the floor system transforming all vibration and sound flows into micro floating movements of the upper floating screed.

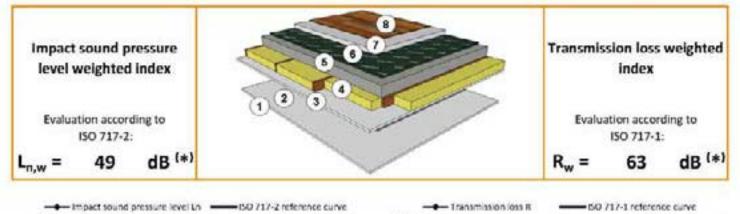
<u>Under-wall strip</u>: Under any wall or partition a resilient strip is needed in order to prevent the transfer of structural vibration or noise to the floor and vice versa.

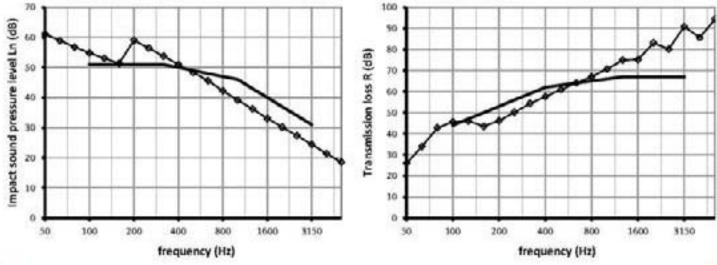
Levelling screed: If there is piping located over the floor base a levelling screed is required in order to produce a homogeneous flat surface on which the resilient layer will be placed.

Acoustic insulation: The acoustic insulation layer is selected so as to achieve the required level of impact sound improvement as specified by the relevant national building regulations.

Edging strips: To achieve the floating movements of the upper screed, the screed must be separated from the surrounding room walls. This separation can be obtained by placing the horizontal insulation layer onto to the vertical wall side or more simply by using the Profyle Self Adhesive Edging Strips which are placed on all perimeter walls before laying down the horizontal insulation layer. In this manner an elastic joint between the floating screed and the wall is created granting free movement of the floor against the walls.

<u>Floating screed</u>: A traditional mixture of sand and cement or a "self-levelling" proprietary screed mixture. The important point here is to achieve a uniform thickness with a minimum thickness required by the acoustical analysis in our application manual of never less than 4 cm.

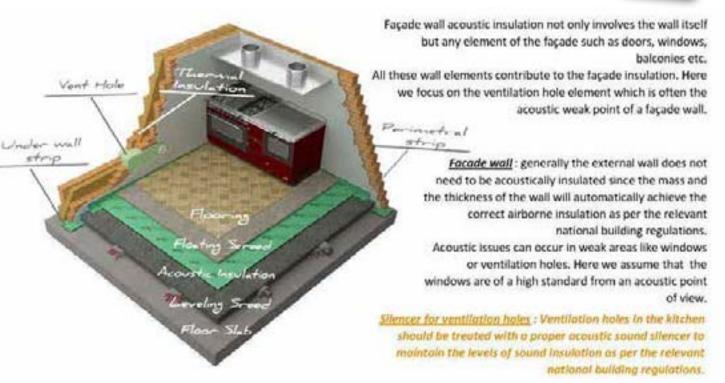

Flooring : At this stage it is important that the edging strip along the wall is not cut but continues to separate the floor finish from the walls.


Client	
Country	
Suggested products	

Predictional calculation of floor insulation

	Floor composition				
n	Layers composition	thickness	conductivity	density	resistance
	(from bottom to top)	s (mm)	λ (W/mK)	p (kg/m ³)	R (m ² K/W)
1	Gypsumboard	12.5	0.21	900	0.060
2	Air gap	350	-		0.180
3	Gypsumboard	12.5	0.21	900	0.060
4	wood laths and Isolgomma Mineral 60-70	80	0.04	70	1.500
5	Concrete floor	100	1	2400	0.100
6	Isolgomma Grei 5 (two layers)	10	0.067		0.149
7	Screed	50	1	2400	0.050
8	Wooden finishing	10	0.5		0.020
	Total thickness	625			
Superficial thermal resistance (internal surface)					
Superficial thermal resistance (external surface) U - Total trasmittance (W/m²K)					0.170
					0.407

(*) Ln,w is defined as the theoretical weighted index of the impact sound pressure level; Rw is defined as the theoretical weighted index of the transmission loss. These indexes take into account the characteristics of the materials, the layers composition and the adopted insulating products. It is not a prediction of site preformances (L'n,w - R'w), that depend on the flanking transmissions, joint types of the separating elements, volumes of the emitting and receiving rooms.


Facades insulation

TECHNICAL REPORT

Prescriptions

To get a proper facade insulation a ventilation hole silencer has to be used (see the next picture for reference).

Start the building of the wall and stop at the height decided for the ventilation hole. Lay the Sylencer horizontally on the mortar layer.

Build the wall around the Sylencer and plaster using a specific mesh.

Remove the cap of the Sylencer and insert the finishing grid.

Prescriptions

The acoustic problems of hydraulic equipment in civil buildings is the drain pipe, which connect bathrooms at different floors; the water outflow creates different noise typologies that have to be solved separately.

Noise from fall It's the noise caused by the water which falls inside the pipe.

Noise from Impact

It is caused by the impact of water on the change of direction of the pipe at curves. Water hits the pipe and the outflow gets slower.

Noise from the outflow

It is caused by the horizontal flow of the water inside the pipe. Generally it is slient, but it can disturb if the pipe changes the direction.

To get a better pipe insulation, it is necessary to coat the pipe with an elastic and high density product, for example Syl (fig. 1); the improvement is at least 10 dB. In the case of pipes fixed with metal bands, insert Syl to reduce structural vibration and noise (fig. 2)

Remove adhesive film and glue the product around the pipes.

Insert the pipe in the proper casing.

Carry on the installation of the pipes.

Prescriptions

Impact noise and airborne noise propagate through the building structures as vibration and transfer in the rooms connected to the sound source as vibration. The way to eliminate this indirect sound transmission is to separate the structures through anti-vibration elements. This is the case of the insulation of separating elements between dwellings using underwall strips. Under-wall strips prevent the transmission of walls vibration and noise to the floor and create an elastic joint at the lower border of the wall, improving the acoustic insulation of the walls and the impact noise insulation of the floor.

Depending on the load, the natural frequency of the wall-strip system can be evaluated and analyzed to get the insulation from the disturbing frequencies. First of all, the load of the wall has to be known:

HEAVY WALLS: realized with heavy blocks made of concrete or bricks.

Load of the wall: 400 – 600 kg/m² Load on the strip: 0.04 – 0.06 N/mm²

MEDIUM WEIGHT WALLS: realized with heavy hollow blocks or similar type blocks

Load of the wall: 200 – 400 kg/m² Load on the strip: 0,02 – 0,04 N/mm²

LIGHT WALLS: made of light hollow blocks or light concrete blocks

Load of the wall: 100 – 200 kg/m² Load on the strip: 0.01 – 0.02 N/mm²

Lay the under-wall strip.


Realize brick wall on the strip, applying it on the mortar layer.

EXAMPLES OF INDUSTRY CALCULATION

Indications of vibration insulation

Client	
Country	Turkey
Object	Machine vibration insulation
Project	
Note	
Product	Megamat 20/500 (3 layers)

Date	Writer	Rel. N.
		ENG-I-2012-XXX

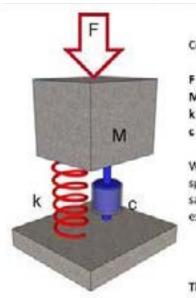
Abstract

This technical report represents the best knowledge of ISOLGOMMA SrI in the industry for vibration insulation. This report indicates our best anti-vibration technical solutions based on our market and application experience and based on our theoretical knowledge; it do not replace the competence of the deputed technical body. This report can not be used as unique reference to issue a building permit. All the results and anti-vibration indication of this report are valid considering the application procedure shown in our manual book and here synthetically mentioned. ISOLGOMMA SrI is not responsible for the result and quality of product application.

Index	
Definition	3
Input data	4
Solution output	5
Attachments:	
Technical data	

Warnings

The values of vibration isolation are calculated with software owned by isolgomma Sri The results are not laboratory tests and therefore the accuracy of the prediction depends on the formulations adopted by the calculation model and the accuracy of the input data. Is some cases may be found calculations overestimated or underestimated depending on the type of machine being analyted.

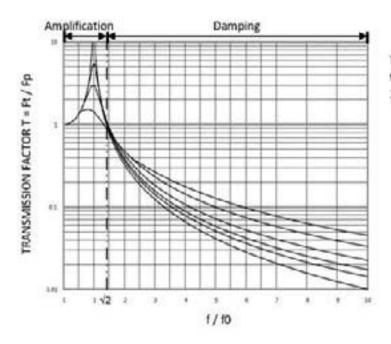


Parameter

Vibration:	it defines the vibrating motion of a body oscillation around a position of balance, resulting in a force which varies over time
Frequency:	is the number times that the motion of the system shows the same characteristics in a target range represents the number of cycles completed in time
Natural frequency (f ₀):	frequency which vibrates in the absence of external forces
Work frequency (f):	it dipend to the external action F (t), if any, acting on the system with variability dependent on time

Mass-spring system

Consider the following parameters:


- F vibration force
- M mass of the system
- k stiffness
 - damping

- t, period
- f frequency 1/tp
- F. amplitude of disturbing force
- F. amplitude of transmitted force

We consider a force vibration F, applied to the mass M, of harmonic sinusoidal type. Through the spring system, with stiffness k and damping c, is transmitted to the support structure a force with the same frequency f (tp same period) but different amplitude (Ft). The effect of damping system can be expressed through the transmission factor:

$T = F_1 / F_p$

The spring system is efficient when T <1, when the force transmitted is less than the disturbing force

The spring system, to be effective, must be chosen so as to give the system supported a natural oscillation frequency of at least 1.41 times less than the rate of force perturbante, $f/f0> \sqrt{2}$

Degree of insulation (%)

 $A_{\%} = 100(1 - T)$

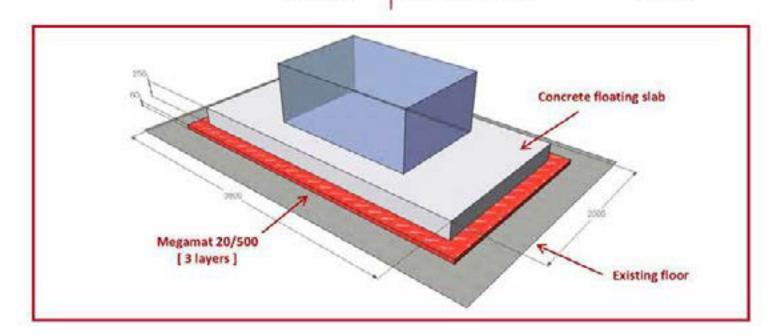
Transmission reduction (dB)

$$A_{dB} = 20 \log (T)$$

Floating base

TECHNICAL REPORT

Input data



Machine dimensions		
Lenght		mm
Width		mm
Height		mm
Machine weight	1000	kg
Base dimensions		
enght	3800	mm
Width	2000	mm
Height	250	mm
Base weight concrete density 2400 kg/m*)	4560	kg

Pressure on mat

0.0072 N/mm²

Requirements						
Work frequency	50 Hz	Degree of insulation	max %			
	3000 rpm	Transmission reduction	max dB			

Client	
Country	Turkey
Product	Megamat 20/500 (3 layers)

Solution output

Product suggest:	Megamat 20/500 (3 continuous layers)	
Product thichness:	60 mm	Static Young modul:	0.623 N/mm ²
Loss factor:	0.143	Dynamic Young modul:	0.700 N/mm ²
	Res	ults	
Pressure on product:	0.007 N/mm ²	Natural frequency:	20.1 Hz
Static displacement:	0.7 mm	Disturbing frequency:	50 Hz
Dynamic displacement:	0.6 mm	Transmission factor T:	0.205 < 1
DEGREE OF INSULATION	79.5 %	TRANSMISSION REDUCTION	-13.8 dB
(IH) Acuanda La Construction (IH) Acuanda La		50 60 70 80	90 10
100% 90%	Natur	al frequency (Hz)	
90% 80% 70% 70% 40% 90%			
105 105 105 105 105 105 105 105 105 105			
			1

Notes

© 2006 locigomma Srl - All rights reserved - Printed in Italy (01 14) - Cod. 91020015

Isolgomma Srt 36620 Albettone (Vicenza) Italy - via dell'Artigianato Z.I. tel. +39 0444 790781 - fax +39 0444 790784 Inte@isolgomma.com - www.isolgomma.com

Distributore - Distributor